These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 16753827)

  • 1. The potential of cystine-knot microproteins as novel pharmacophoric scaffolds in oral peptide drug delivery.
    Werle M; Schmitz T; Huang HL; Wentzel A; Kolmar H; Bernkop-Schnürch A
    J Drug Target; 2006 Apr; 14(3):137-46. PubMed ID: 16753827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation and improvement of the properties of the novel cystine-knot microprotein McoEeTI for oral administration.
    Werle M; Kafedjiiski K; Kolmar H; Bernkop-Schnürch A
    Int J Pharm; 2007 Mar; 332(1-2):72-9. PubMed ID: 17070661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of the barrier caused by luminally secreted gastro-intestinal proteolytic enzymes for two novel cystine-knot microproteins.
    Werle M; Kolmar H; Albrecht R; Bernkop-Schnürch A
    Amino Acids; 2008 Jun; 35(1):195-200. PubMed ID: 17619117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution structure of a sponge-derived cystine knot peptide and its notable stability.
    Li H; Su M; Hamann MT; Bowling JJ; Kim HS; Jung JH
    J Nat Prod; 2014 Feb; 77(2):304-10. PubMed ID: 24499386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cactus-derived toxin-like cystine knot Peptide with selective antimicrobial activity.
    Aboye TL; Strömstedt AA; Gunasekera S; Bruhn JG; El-Seedi H; Rosengren KJ; Göransson U
    Chembiochem; 2015 May; 16(7):1068-77. PubMed ID: 25821084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amide Rotation Hindrance Predicts Proteolytic Resistance of Cystine-Knot Peptides.
    Zhou Y; Xie D; Zhang Y
    J Phys Chem Lett; 2016 Apr; 7(7):1138-42. PubMed ID: 26958702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability and Safety of Inhibitor Cystine Knot Peptide, GTx1-15, from the Tarantula Spider
    Kimura T
    Toxins (Basel); 2021 Sep; 13(9):. PubMed ID: 34564625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oral peptide drug delivery: polymer-inhibitor conjugates protecting insulin from enzymatic degradation in vitro.
    Marschütz MK; Bernkop-Schnürch A
    Biomaterials; 2000 Jul; 21(14):1499-507. PubMed ID: 10872779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Proteolytic Resistance of Spider-Derived Inhibitor Cystine Knots.
    Kikuchi K; Sugiura M; Kimura T
    Int J Pept; 2015; 2015():537508. PubMed ID: 26843868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot.
    Colgrave ML; Craik DJ
    Biochemistry; 2004 May; 43(20):5965-75. PubMed ID: 15147180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of cystine knots in collagen folding and stability, part II. Conformational properties of (Pro-Hyp-Gly)n model trimers with N- and C-terminal collagen type III cystine knots.
    Barth D; Kyrieleis O; Frank S; Renner C; Moroder L
    Chemistry; 2003 Aug; 9(15):3703-14. PubMed ID: 12898697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cystine knot of a squash-type protease inhibitor as a structural scaffold for Escherichia coli cell surface display of conformationally constrained peptides.
    Christmann A; Walter K; Wentzel A; Krätzner R; Kolmar H
    Protein Eng; 1999 Sep; 12(9):797-806. PubMed ID: 10506290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cystine knot motif in toxins and implications for drug design.
    Craik DJ; Daly NL; Waine C
    Toxicon; 2001 Jan; 39(1):43-60. PubMed ID: 10936622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable and biocompatible cystine knot peptides from the marine sponge Asteropus sp.
    Su M; Li H; Wang H; Kim E; Kim HS; Kim EH; Lee J; Jung JH
    Bioorg Med Chem; 2016 Jul; 24(13):2979-2987. PubMed ID: 27189887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asteropsins B-D, sponge-derived knottins with potential utility as a novel scaffold for oral peptide drugs.
    Li H; Bowling JJ; Su M; Hong J; Lee BJ; Hamann MT; Jung JH
    Biochim Biophys Acta; 2014 Mar; 1840(3):977-84. PubMed ID: 24225326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological diversity and therapeutic potential of natural and engineered cystine knot miniproteins.
    Kolmar H
    Curr Opin Pharmacol; 2009 Oct; 9(5):608-14. PubMed ID: 19523876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of a Beetroot Protease Inhibitor to Identify and Classify Plant-Derived Cystine Knot Peptides.
    Retzl B; Hellinger R; Muratspahić E; Pinto MEF; Bolzani VS; Gruber CW
    J Nat Prod; 2020 Nov; 83(11):3305-3314. PubMed ID: 33118348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disulphide bonds in wheat gluten: isolation of a cystine peptide from glutenin.
    Köhler P; Belitz HD; Wieser H
    Z Lebensm Unters Forsch; 1991 Mar; 192(3):234-9. PubMed ID: 2038894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cyclotides and related macrocyclic peptides as scaffolds in drug design.
    Craik DJ; Cemazar M; Daly NL
    Curr Opin Drug Discov Devel; 2006 Mar; 9(2):251-60. PubMed ID: 16566295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative folding of peptides with cystine-knot architectures: kinetic studies and optimization of folding conditions.
    Reinwarth M; Glotzbach B; Tomaszowski M; Fabritz S; Avrutina O; Kolmar H
    Chembiochem; 2013 Jan; 14(1):137-46. PubMed ID: 23229141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.