BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16754679)

  • 1. Structural analyses on intermediates in serine protease catalysis.
    Liu B; Schofield CJ; Wilmouth RC
    J Biol Chem; 2006 Aug; 281(33):24024-35. PubMed ID: 16754679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray snapshots of serine protease catalysis reveal a tetrahedral intermediate.
    Wilmouth RC; Edman K; Neutze R; Wright PA; Clifton IJ; Schneider TR; Schofield CJ; Hajdu J
    Nat Struct Biol; 2001 Aug; 8(8):689-94. PubMed ID: 11473259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray structure of a serine protease acyl-enzyme complex at 0.95-A resolution.
    Katona G; Wilmouth RC; Wright PA; Berglund GI; Hajdu J; Neutze R; Schofield CJ
    J Biol Chem; 2002 Jun; 277(24):21962-70. PubMed ID: 11896054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio QM/MM dynamics simulation of the tetrahedral intermediate of serine proteases: insights into the active site hydrogen-bonding network.
    Topf M; Várnai P; Richards WG
    J Am Chem Soc; 2002 Dec; 124(49):14780-8. PubMed ID: 12465991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations of the acyl-enzyme and the tetrahedral intermediate in the deacylation step of serine proteases.
    Topf M; Várnai P; Schofield CJ; Richards WG
    Proteins; 2002 May; 47(3):357-69. PubMed ID: 11948789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of a specific acyl-enzyme complex formed between beta-casomorphin-7 and porcine pancreatic elastase.
    Wilmouth RC; Clifton IJ; Robinson CV; Roach PL; Aplin RT; Westwood NJ; Hajdu J; Schofield CJ
    Nat Struct Biol; 1997 Jun; 4(6):456-62. PubMed ID: 9187653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 'pH-jump' crystallographic analyses of gamma-lactam-porcine pancreatic elastase complexes.
    Wright PA; Wilmouth RC; Clifton IJ; Schofield CJ
    Biochem J; 2000 Oct; 351 Pt 2(Pt 2):335-40. PubMed ID: 11023818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical studies on the deacylation step of serine protease catalysis in the gas phase, in solution, and in elastase.
    Topf M; Richards WG
    J Am Chem Soc; 2004 Nov; 126(44):14631-41. PubMed ID: 15521783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site.
    Katz BA; Elrod K; Luong C; Rice MJ; Mackman RL; Sprengeler PA; Spencer J; Hataye J; Janc J; Link J; Litvak J; Rai R; Rice K; Sideris S; Verner E; Young W
    J Mol Biol; 2001 Apr; 307(5):1451-86. PubMed ID: 11292354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The serpin MNEI inhibits elastase-like and chymotrypsin-like serine proteases through efficient reactions at two active sites.
    Cooley J; Takayama TK; Shapiro SD; Schechter NM; Remold-O'Donnell E
    Biochemistry; 2001 Dec; 40(51):15762-70. PubMed ID: 11747453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of an elastase-specific inhibitor elafin complexed with porcine pancreatic elastase determined at 1.9 A resolution.
    Tsunemi M; Matsuura Y; Sakakibara S; Katsube Y
    Biochemistry; 1996 Sep; 35(36):11570-6. PubMed ID: 8794736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors determining the relative stability of anionic tetrahedral complexes in serine protease catalysis and inhibition.
    Shokhen M; Albeck A
    Proteins; 2000 Jul; 40(1):154-67. PubMed ID: 10813840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscous drag as the source of active site perturbation during protease translocation: insights into how inhibitory processes are controlled by serpin metastability.
    Shin JS; Yu MH
    J Mol Biol; 2006 Jun; 359(2):378-89. PubMed ID: 16626735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of a hybrid squash inhibitor in complex with porcine pancreatic elastase at 1.8 A resolution.
    Aÿ J; Hilpert K; Krauss N; Schneider-Mergener J; Höhne W
    Acta Crystallogr D Biol Crystallogr; 2003 Feb; 59(Pt 2):247-54. PubMed ID: 12554935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate.
    Valiña AL; Mazumder-Shivakumar D; Bruice TC
    Biochemistry; 2004 Dec; 43(50):15657-72. PubMed ID: 15595822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Details of the acyl-enzyme intermediate and the oxyanion hole in serine protease catalysis.
    Whiting AK; Peticolas WL
    Biochemistry; 1994 Jan; 33(2):552-61. PubMed ID: 8286385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic insights into the inhibition of serine proteases by monocyclic lactams.
    Wilmouth RC; Kassamally S; Westwood NJ; Sheppard RJ; Claridge TD; Aplin RT; Wright PA; Pritchard GJ; Schofield CJ
    Biochemistry; 1999 Jun; 38(25):7989-98. PubMed ID: 10387042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme:substrate hydrogen bond shortening during the acylation phase of serine protease catalysis.
    Fodor K; Harmat V; Neutze R; Szilágyi L; Gráf L; Katona G
    Biochemistry; 2006 Feb; 45(7):2114-21. PubMed ID: 16475800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do cleavages of amides by serine proteases occur through a stepwise pathway involving tetrahedral intermediates?
    Komiyama M; Bender ML
    Proc Natl Acad Sci U S A; 1979 Feb; 76(2):557-60. PubMed ID: 284381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct crystallographic observation of an acyl-enzyme intermediate in the elastase-catalyzed hydrolysis of a peptidyl ester substrate: Exploiting the "glass transition" in protein dynamics.
    Ding X; Rasmussen BF; Petsko GA; Ringe D
    Bioorg Chem; 2006 Dec; 34(6):410-23. PubMed ID: 17083959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.