These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 16754867)

  • 1. A Vibrio cholerae protease needed for killing of Caenorhabditis elegans has a role in protection from natural predator grazing.
    Vaitkevicius K; Lindmark B; Ou G; Song T; Toma C; Iwanaga M; Zhu J; Andersson A; Hammarström ML; Tuck S; Wai SN
    Proc Natl Acad Sci U S A; 2006 Jun; 103(24):9280-5. PubMed ID: 16754867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genes Activated by
    List C; Grutsch A; Radler C; Cakar F; Zingl FG; Schild-Prüfert K; Schild S
    mSphere; 2018; 3(3):. PubMed ID: 29794057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of Vibrio cholerae virulence genes in response to environmental signals.
    Peterson KM
    Curr Issues Intest Microbiol; 2002 Sep; 3(2):29-38. PubMed ID: 12400636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A colonization factor links Vibrio cholerae environmental survival and human infection.
    Kirn TJ; Jude BA; Taylor RK
    Nature; 2005 Dec; 438(7069):863-6. PubMed ID: 16341015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrio cholerae cytolysin causes an inflammatory response in human intestinal epithelial cells that is modulated by the PrtV protease.
    Ou G; Rompikuntal PK; Bitar A; Lindmark B; Vaitkevicius K; Wai SN; Hammarström ML
    PLoS One; 2009 Nov; 4(11):e7806. PubMed ID: 19907657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small RNA coaR contributes to intestinal colonization in Vibrio cholerae via the two-component system EnvZ/OmpR.
    Xi D; Li Y; Yan J; Li Y; Wang X; Cao B
    Environ Microbiol; 2020 Oct; 22(10):4231-4243. PubMed ID: 31868254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrio cholerae hemolysin is required for lethality, developmental delay, and intestinal vacuolation in Caenorhabditis elegans.
    Cinar HN; Kothary M; Datta AR; Tall BD; Sprando R; Bilecen K; Yildiz F; McCardell B
    PLoS One; 2010 Jul; 5(7):e11558. PubMed ID: 20644623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a constitutively active variant of LuxO that affects production of HA/protease and biofilm development in a non-O1, non-O139 Vibrio cholerae O110.
    Raychaudhuri S; Jain V; Dongre M
    Gene; 2006 Mar; 369():126-33. PubMed ID: 16376028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulatory networks controlling Vibrio cholerae virulence gene expression.
    Matson JS; Withey JH; DiRita VJ
    Infect Immun; 2007 Dec; 75(12):5542-9. PubMed ID: 17875629
    [No Abstract]   [Full Text] [Related]  

  • 10. Modulating the Global Response Regulator, LuxO of
    Hema M; Vasudevan S; Balamurugan P; Adline Princy S
    Front Cell Infect Microbiol; 2017; 7():441. PubMed ID: 29075619
    [No Abstract]   [Full Text] [Related]  

  • 11. Regulation of virulence in Vibrio cholerae.
    Klose KE
    Int J Med Microbiol; 2001 May; 291(2):81-8. PubMed ID: 11437342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. vpsA- and luxO-independent biofilms of Vibrio cholerae.
    Müller J; Miller MC; Nielsen AT; Schoolnik GK; Spormann AM
    FEMS Microbiol Lett; 2007 Oct; 275(2):199-206. PubMed ID: 17697110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel insights into Haemagglutinin Protease (HAP) gene regulation in Vibrio cholerae.
    Halpern M
    Mol Ecol; 2010 Oct; 19(19):4108-12. PubMed ID: 20819164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional GacS in Pseudomonas DSS73 prevents digestion by Caenorhabditis elegans and protects the nematode from killer flagellates.
    Bjørnlund L; Rønn R; Péchy-Tarr M; Maurhofer M; Keel C; Nybroe O
    ISME J; 2009 Jul; 3(7):770-9. PubMed ID: 19340083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-transcriptional cross-talk between pro- and anti-colonization pili biosynthesis systems in Vibrio cholerae.
    Hsiao A; Toscano K; Zhu J
    Mol Microbiol; 2008 Feb; 67(4):849-60. PubMed ID: 18179420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ToxT-dependent methyl-accepting chemoreceptors AcfB and TcpI contribute to Vibrio cholerae intestinal colonization.
    Chaparro AP; Ali SK; Klose KE
    FEMS Microbiol Lett; 2010 Jan; 302(2):99-105. PubMed ID: 19929967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the Vibrio cholerae vexAB and vexCD efflux systems.
    Bina JE; Provenzano D; Wang C; Bina XR; Mekalanos JJ
    Arch Microbiol; 2006 Sep; 186(3):171-81. PubMed ID: 16804679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Outer Membrane Vesicle-Mediated Export of Processed PrtV Protease from Vibrio cholerae.
    Rompikuntal PK; Vdovikova S; Duperthuy M; Johnson TL; Åhlund M; Lundmark R; Oscarsson J; Sandkvist M; Uhlin BE; Wai SN
    PLoS One; 2015; 10(7):e0134098. PubMed ID: 26222047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Alteration of cholera toxin biosynthesis in Vibrio cholerae 01 as a result of temperate phage 139 integration into bacterial chromosome].
    Eroshenko GA; Smirnova NI
    Mol Gen Mikrobiol Virusol; 2002; (2):9-14. PubMed ID: 12180025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secreted Proteases Control the Timing of Aggregative Community Formation in Vibrio cholerae.
    Jemielita M; Mashruwala AA; Valastyan JS; Wingreen NS; Bassler BL
    mBio; 2021 Dec; 12(6):e0151821. PubMed ID: 34809464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.