BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 16756293)

  • 1. Mechanistic implications of pseudo zero order kinetics in kinetic resolutions.
    Blackmond DG; Hodnett NS; Lloyd-Jones GC
    J Am Chem Soc; 2006 Jun; 128(23):7450-1. PubMed ID: 16756293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple and effective catalytic system for epoxidation of aliphatic terminal alkenes with manganese(II) as the catalyst.
    Ho KP; Wong WL; Lam KM; Lai CP; Chan TH; Wong KY
    Chemistry; 2008; 14(26):7988-96. PubMed ID: 18618538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intramolecular hydroalkoxylation/cyclization of alkynyl alcohols mediated by lanthanide catalysts. Scope and reaction mechanism.
    Seo S; Yu X; Marks TJ
    J Am Chem Soc; 2009 Jan; 131(1):263-76. PubMed ID: 19086869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects.
    Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD
    Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of hydroaminoalkylation catalyzed by group 5 metal binaphtholate complexes.
    Reznichenko AL; Hultzsch KC
    J Am Chem Soc; 2012 Feb; 134(6):3300-11. PubMed ID: 22264172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and mechanism of olefin epoxidation with aqueous H2O2 and a highly selective surface-modified TaSBA15 heterogeneous catalyst.
    Ruddy DA; Tilley TD
    J Am Chem Soc; 2008 Aug; 130(33):11088-96. PubMed ID: 18662001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic kinetic resolution catalyzed by enzymes and metals.
    Martín-Matute B; Bäckvall JE
    Curr Opin Chem Biol; 2007 Apr; 11(2):226-32. PubMed ID: 17349815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epoxidation and 1,2-dihydroxylation of alkenes by a nonheme iron model system - DFT supports the mechanism proposed by experiment.
    Comba P; Rajaraman G
    Inorg Chem; 2008 Jan; 47(1):78-93. PubMed ID: 18072762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of Pd(OAc)2/DMSO-catalyzed aerobic alcohol oxidation: mass-transfer-limitation effects and catalyst decomposition pathways.
    Steinhoff BA; Stahl SS
    J Am Chem Soc; 2006 Apr; 128(13):4348-55. PubMed ID: 16569011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The kinetic basis of a general method for the investigation of active site content of enzymes and catalytic antibodies: first-order behaviour under single-turnover and cycling conditions.
    Topham CM; Gul S; Resmini M; Sonkaria S; Gallacher G; Brocklehurst K
    J Theor Biol; 2000 May; 204(2):239-56. PubMed ID: 10887904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trimanganese complexes bearing bidentate nitrogen ligands as a highly efficient catalyst precursor in the epoxidation of alkenes.
    Kang B; Kim M; Lee J; Do Y; Chang S
    J Org Chem; 2006 Sep; 71(18):6721-7. PubMed ID: 16930020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic resolution of racemic secondary alcohols catalyzed by chiral diaminodiphosphine-Ir(I) complexes.
    Li YY; Zhang XQ; Dong ZR; Shen WY; Chen G; Gao JX
    Org Lett; 2006 Nov; 8(24):5565-7. PubMed ID: 17107073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trimethyl phosphite as a trap for alkoxy radicals formed from the ring opening of oxiranylcarbinyl radicals. Conversion to alkenes. Mechanistic applications to the study of C-C versus C-O ring cleavage.
    Ding B; Bentrude WG
    J Am Chem Soc; 2003 Mar; 125(11):3248-59. PubMed ID: 12630880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ring-expanding olefin metathesis: a route to highly active unsymmetrical macrocyclic oligomeric co-salen catalysts for the hydrolytic kinetic resolution of epoxides.
    Zheng X; Jones CW; Weck M
    J Am Chem Soc; 2007 Feb; 129(5):1105-12. PubMed ID: 17263391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism-guided development of VO(salen)X complexes as catalysts for the asymmetric synthesis of cyanohydrin trimethylsilyl ethers.
    Belokon YN; Clegg W; Harrington RW; Maleev VI; North M; Pujol MO; Usanov DL; Young C
    Chemistry; 2009; 15(9):2148-65. PubMed ID: 19145602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and titration methods for determination of active site contents of enzyme and catalytic antibody preparations.
    Brocklehurst K; Resmini M; Topham CM
    Methods; 2001 Jun; 24(2):153-67. PubMed ID: 11384190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mu-eta1:eta1-peroxo-bridged dinuclear peroxotungstate catalytically active for epoxidation of olefins.
    Kamata K; Kuzuya S; Uehara K; Yamaguchi S; Mizuno N
    Inorg Chem; 2007 Apr; 46(9):3768-74. PubMed ID: 17375917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of alcohol by lipopathic Cr(VI): a mechanistic study.
    Patel S; Mishra BK
    J Org Chem; 2006 Sep; 71(18):6759-66. PubMed ID: 16930025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic insights into selectivity control for heterogeneous olefin oxidation: styrene oxidation on Au(111).
    Quiller RG; Liu X; Friend CM
    Chem Asian J; 2010 Jan; 5(1):78-86. PubMed ID: 20014272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound assisted phase-transfer catalytic epoxidation of 1,7-octadiene - a kinetic study.
    Wang ML; Rajendran V
    Ultrason Sonochem; 2007 Jan; 14(1):46-54. PubMed ID: 16571377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.