These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 16756305)

  • 61. Single-walled carbon nanotubes used as stationary phase in GC.
    Yuan LM; Ren CX; Li L; Ai P; Yan ZH; Zi M; Li ZY
    Anal Chem; 2006 Sep; 78(18):6384-90. PubMed ID: 16970312
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Preparation and characterization of novel fluorescent nanocomposite particles: CdSe/ZnS core-shell quantum dots loaded solid lipid nanoparticles.
    Liu W; He Z; Liang J; Zhu Y; Xu H; Yang X
    J Biomed Mater Res A; 2008 Mar; 84(4):1018-25. PubMed ID: 17668863
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Electronic Properties of Q-CdS Clusters Stabilized by Adenine.
    Kumar A; Mital S
    J Colloid Interface Sci; 2001 Aug; 240(2):459-466. PubMed ID: 11482953
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Arrangement of palladium nanoparticles templated by supramolecular self-assembly of SDS wrapped on single-walled carbon nanotubes.
    Tan Z; Abe H; Naito M; Ohara S
    Chem Commun (Camb); 2010 Jun; 46(24):4363-5. PubMed ID: 20467658
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hydroboration of C(100) surface, fullerene, and the sidewalls of single-wall carbon nanotubes with borane.
    Long L; Lu X; Tian F; Zhang Q
    J Org Chem; 2003 May; 68(11):4495-8. PubMed ID: 12762755
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Control of near infrared photoluminescence properties of single-walled carbon nanotubes by functionalization with dendrons.
    Maeda Y; Konno Y; Yamada M; Zhao P; Zhao X; Ehara M; Nagase S
    Nanoscale; 2018 Dec; 10(48):23012-23017. PubMed ID: 30500038
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu(II) detection.
    Hu C; Yu C; Li M; Wang X; Yang J; Zhao Z; Eychmüller A; Sun YP; Qiu J
    Small; 2014 Dec; 10(23):4926-33. PubMed ID: 25048718
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Optical spectroscopic studies of thermally coalesced single-walled carbon nanotubes.
    Shimamoto D; Muramatsu H; Kim YJ; Kim YA; Hayashi T; Endo M; Terrones M; Dresselhaus MS
    J Nanosci Nanotechnol; 2010 Jun; 10(6):3878-83. PubMed ID: 20355383
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Biogenic Synthesis of Fluorescent Carbon Dots at Ambient Temperature Using Azadirachta indica (Neem) gum.
    Phadke C; Mewada A; Dharmatti R; Thakur M; Pandey S; Sharon M
    J Fluoresc; 2015 Jul; 25(4):1103-7. PubMed ID: 26123675
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Noncovalently silylated carbon nanotubes decorated with quantum dots.
    Bottini M; Magrini A; Dawson MI; Rosato N; Bergamaschi A; Mustelin T
    Carbon N Y; 2007 Mar; 45(3):673-676. PubMed ID: 18311318
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Photobleaching and stabilization of carbon nanodots produced by solvothermal synthesis.
    Wang W; Damm C; Walter J; Nacken TJ; Peukert W
    Phys Chem Chem Phys; 2016 Jan; 18(1):466-75. PubMed ID: 26616577
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Innovative inorganic-organic nanohybrid materials: coupling quantum dots to carbon nanotubes.
    Schulz-Drost C; Sgobba V; Gerhards C; Leubner S; Krick Calderon RM; Ruland A; Guldi DM
    Angew Chem Int Ed Engl; 2010 Aug; 49(36):6425-9. PubMed ID: 20540121
    [No Abstract]   [Full Text] [Related]  

  • 73. Thermodynamic control of quantum defects on single-walled carbon nanotubes.
    Maeda Y; Murakoshi H; Tambo H; Zhao P; Kuroda K; Yamada M; Zhao X; Nagase S; Ehara M
    Chem Commun (Camb); 2019 Nov; 55(91):13757-13760. PubMed ID: 31663535
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Editorial for the Special Issue Entitled "Carbon-Based Quantum Dots".
    Chen S
    Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37177010
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Electrochemical exfoliation of carbon dots with the narrowest full width at half maximum in their fluorescence spectra in the ultraviolet region using only water as electrolyte.
    Li X; Zhao Z; Pan C
    Chem Commun (Camb); 2016 Aug; 52(60):9406-9. PubMed ID: 27376467
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Heterogeneous Dendrimer-Based Catalysts.
    Karakhanov E; Maximov A; Zolotukhina A
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267800
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Semiconductor quantum dots for biomedicial applications.
    Shao L; Gao Y; Yan F
    Sensors (Basel); 2011; 11(12):11736-51. PubMed ID: 22247690
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Shell-Controlled Photoluminescence in CdSe/CNT Nanohybrids.
    Si HY; Liu CH; Xu H; Wang TM; Zhang HL
    Nanoscale Res Lett; 2009 Jun; 4(10):1146-52. PubMed ID: 20596321
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Dendron-tethered and templated CdS quantum dots on single-walled carbon nanotubes.
    Hwang SH; Moorefield CN; Wang P; Jeong KU; Cheng SZ; Kotta KK; Newkome GR
    J Am Chem Soc; 2006 Jun; 128(23):7505-9. PubMed ID: 16756305
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm.
    Sun X; Zaric S; Daranciang D; Welsher K; Lu Y; Li X; Dai H
    J Am Chem Soc; 2008 May; 130(20):6551-5. PubMed ID: 18426207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.