BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

504 related articles for article (PubMed ID: 16756489)

  • 1. Energy transduction: proton transfer through the respiratory complexes.
    Hosler JP; Ferguson-Miller S; Mills DA
    Annu Rev Biochem; 2006; 75():165-87. PubMed ID: 16756489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An arginine to lysine mutation in the vicinity of the heme propionates affects the redox potentials of the hemes and associated electron and proton transfer in cytochrome c oxidase.
    Mills DA; Geren L; Hiser C; Schmidt B; Durham B; Millett F; Ferguson-Miller S
    Biochemistry; 2005 Aug; 44(31):10457-65. PubMed ID: 16060654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water chain formation and possible proton pumping routes in Rhodobacter sphaeroides cytochrome c oxidase: a molecular dynamics comparison of the wild type and R481K mutant.
    Seibold SA; Mills DA; Ferguson-Miller S; Cukier RI
    Biochemistry; 2005 Aug; 44(31):10475-85. PubMed ID: 16060656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase.
    Belevich I; Verkhovsky MI; Wikström M
    Nature; 2006 Apr; 440(7085):829-32. PubMed ID: 16598262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the cytochrome c oxidase proton pump: thermodynamics of redox linkage.
    Musser SM; Chan SI
    Biophys J; 1995 Jun; 68(6):2543-55. PubMed ID: 7647257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping protein dynamics in catalytic intermediates of the redox-driven proton pump cytochrome c oxidase.
    Busenlehner LS; Salomonsson L; Brzezinski P; Armstrong RN
    Proc Natl Acad Sci U S A; 2006 Oct; 103(42):15398-403. PubMed ID: 17023543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The protonation state of a heme propionate controls electron transfer in cytochrome c oxidase.
    Brändén G; Brändén M; Schmidt B; Mills DA; Ferguson-Miller S; Brzezinski P
    Biochemistry; 2005 Aug; 44(31):10466-74. PubMed ID: 16060655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic study of the proton pumping mechanism in bovine heart cytochrome C oxidase.
    Popović DM; Stuchebrukhov AA
    J Am Chem Soc; 2004 Feb; 126(6):1858-71. PubMed ID: 14871119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox-linked proton translocation in cytochrome oxidase: the importance of gating electron flow. The effects of slip in a model transducer.
    Blair DF; Gelles J; Chan SI
    Biophys J; 1986 Oct; 50(4):713-33. PubMed ID: 3022836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for energy transduction by respiratory alternative complex III.
    Sousa JS; Calisto F; Langer JD; Mills DJ; Refojo PN; Teixeira M; Kühlbrandt W; Vonck J; Pereira MM
    Nat Commun; 2018 Apr; 9(1):1728. PubMed ID: 29712914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamates 99 and 107 in transmembrane helix III of subunit I of cytochrome bd are critical for binding of the heme b595-d binuclear center and enzyme activity.
    Mogi T; Endou S; Akimoto S; Morimoto-Tadokoro M; Miyoshi H
    Biochemistry; 2006 Dec; 45(51):15785-92. PubMed ID: 17176101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochrome c oxidase: chemistry of a molecular machine.
    Musser SM; Stowell MH; Chan SI
    Adv Enzymol Relat Areas Mol Biol; 1995; 71():79-208. PubMed ID: 8644492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process.
    Tsukihara T; Shimokata K; Katayama Y; Shimada H; Muramoto K; Aoyama H; Mochizuki M; Shinzawa-Itoh K; Yamashita E; Yao M; Ishimura Y; Yoshikawa S
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15304-9. PubMed ID: 14673090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the role of the K-proton transfer pathway in cytochrome c oxidase.
    Brändén M; Sigurdson H; Namslauer A; Gennis RB; Adelroth P; Brzezinski P
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5013-8. PubMed ID: 11296255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiratory conservation of energy with dioxygen: cytochrome C oxidase.
    Yoshikawa S; Shimada A; Shinzawa-Itoh K
    Met Ions Life Sci; 2015; 15():89-130. PubMed ID: 25707467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculated proton uptake on anaerobic reduction of cytochrome C oxidase: is the reaction electroneutral?
    Song Y; Michonova-Alexova E; Gunner MR
    Biochemistry; 2006 Jul; 45(26):7959-75. PubMed ID: 16800622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge transfer in the K proton pathway linked to electron transfer to the catalytic site in cytochrome c oxidase.
    Lepp H; Svahn E; Faxén K; Brzezinski P
    Biochemistry; 2008 Apr; 47(17):4929-35. PubMed ID: 18393448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The identity of the transient proton loading site of the proton-pumping mechanism of cytochrome c oxidase.
    Kaila VR; Sharma V; Wikström M
    Biochim Biophys Acta; 2011 Jan; 1807(1):80-4. PubMed ID: 20831859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism for proton pumping in cytochrome c oxidase from an electrostatic and quantum chemical perspective.
    Blomberg MR; Siegbahn PE
    Biochim Biophys Acta; 2012 Apr; 1817(4):495-505. PubMed ID: 21978537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the conserved arginine pair in proton and electron transfer in cytochrome C oxidase.
    Qian J; Mills DA; Geren L; Wang K; Hoganson CW; Schmidt B; Hiser C; Babcock GT; Durham B; Millett F; Ferguson-Miller S
    Biochemistry; 2004 May; 43(19):5748-56. PubMed ID: 15134449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.