These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 16756709)

  • 1. Investigation of the mixing efficiency of a chaotic micromixer using thermal lens spectrometry.
    Ghaleb KA; Stephan K; Pittet P; Ferrigno R; Georges J
    Appl Spectrosc; 2006 May; 60(5):564-7. PubMed ID: 16756709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive micromixer for luminol-peroxide chemiluminescence detection.
    Lok KS; Kwok YC; Nguyen NT
    Analyst; 2011 Jun; 136(12):2586-91. PubMed ID: 21552614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal optimisation in cw-laser crossed-beam photothermal spectrometry: influence of the chopping frequency, sample size and flow rate.
    Abbas Ghaleb K; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Oct; 61(13-14):2849-55. PubMed ID: 16165023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an integrated direct-contacting optical-fiber microchip with light-emitting diode-induced fluorescence detection.
    Liu C; Cui D; Chen X
    J Chromatogr A; 2007 Nov; 1170(1-2):101-6. PubMed ID: 17915241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A serpentine laminating micromixer combining splitting/recombination and advection.
    Kim DS; Lee SH; Kwon TH; Ahn CH
    Lab Chip; 2005 Jul; 5(7):739-47. PubMed ID: 15970967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber.
    Chung YC; Hsu YL; Jen CP; Lu MC; Lin YC
    Lab Chip; 2004 Feb; 4(1):70-7. PubMed ID: 15007444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermooptical detection in microchips: from macro- to micro-scale with enhanced analytical parameters.
    Smirnova A; Proskurnin MA; Bendrysheva SN; Nedosekin DA; Hibara A; Kitamori T
    Electrophoresis; 2008 Jul; 29(13):2741-53. PubMed ID: 18546176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical analysis on a passive chaotic micromixer with helical microchannel.
    Wang R; Lin J
    J Nanosci Nanotechnol; 2006 Jan; 6(1):190-4. PubMed ID: 16573094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel.
    Lin YC; Chung YC; Wu CY
    Biomed Microdevices; 2007 Apr; 9(2):215-21. PubMed ID: 17165126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PDMS-based microfluidics for proteomic analysis.
    Dodge A; Brunet E; Chen S; Goulpeau J; Labas V; Vinh J; Tabeling P
    Analyst; 2006 Oct; 131(10):1122-8. PubMed ID: 17003860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amperometric detection of carbohydrates with a portable silicone/quartz capillary microchip by designed fracture sampling.
    Zhai C; Li C; Qiang W; Lei J; Yu X; Ju H
    Anal Chem; 2007 Dec; 79(24):9427-32. PubMed ID: 18004821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mode-mismatched dual-beam differential thermal lensing with optical scheme design optimized using expert estimation for analytical measurements.
    Proskurnin MA; Volkov ME
    Appl Spectrosc; 2008 Apr; 62(4):439-49. PubMed ID: 18416904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microchip electrophoresis device with on-line microdialysis sampling and on-chip sample derivatization by naphthalene 2,3-dicarboxaldehyde/2-mercaptoethanol for amino acid and peptide analysis.
    Huynh BH; Fogarty BA; Nandi P; Lunte SM
    J Pharm Biomed Anal; 2006 Nov; 42(5):529-34. PubMed ID: 16829012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Miniaturized thermal lens and fluorescence detection system for microchemical chips.
    Yamauchi M; Tokeshi M; Yamaguchi J; Fukuzawa T; Hattori A; Hibara A; Kitamori T
    J Chromatogr A; 2006 Feb; 1106(1-2):89-93. PubMed ID: 16288770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reflective thermal lens detection device.
    Mawatari K; Shimoide K
    Lab Chip; 2006 Jan; 6(1):127-30. PubMed ID: 16372079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous coaxial thermal lens spectroscopy and retro-reflected beam interference detection for capillary electrophoresis.
    Xiong B; Miao X; Zhou X; Deng Y; Zhou P; Hu J
    J Chromatogr A; 2008 Oct; 1209(1-2):260-6. PubMed ID: 18829035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous-wave-laser versus pulsed-laser excitation for crossed-beam photothermal detection in small volume applications: comparative features.
    Georges J
    Appl Spectrosc; 2005 Sep; 59(9):1103-8. PubMed ID: 18028608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parametric investigation on mixing in a micromixer with two-layer crossing channels.
    Hossain S; Kim KY
    Springerplus; 2016; 5(1):794. PubMed ID: 27390635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-channel method for interference-free in-channel amperometric detection in microchip capillary electrophoresis.
    Chen C; Hahn JH
    Anal Chem; 2007 Sep; 79(18):7182-6. PubMed ID: 17708674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal lens detection device.
    Mawatari K; Ohashi T; Ebata T; Tokeshi M; Kitamori T
    Lab Chip; 2011 Sep; 11(17):2990-3. PubMed ID: 21738939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.