These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

579 related articles for article (PubMed ID: 16756971)

  • 1. Freeze-drying of Lactobacillus coryniformis Si3--effects of sucrose concentration, cell density, and freezing rate on cell survival and thermophysical properties.
    Schoug A; Olsson J; Carlfors J; Schnürer J; Håkansson S
    Cryobiology; 2006 Aug; 53(1):119-27. PubMed ID: 16756971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of fermentation pH and temperature on freeze-drying survival and membrane lipid composition of Lactobacillus coryniformis Si3.
    Schoug A; Fischer J; Heipieper HJ; Schnürer J; Håkansson S
    J Ind Microbiol Biotechnol; 2008 Mar; 35(3):175-81. PubMed ID: 18057973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A case study on stress preconditioning of a Lactobacillus strain prior to freeze-drying.
    Bergenholtz ÅS; Wessman P; Wuttke A; Håkansson S
    Cryobiology; 2012 Jun; 64(3):152-9. PubMed ID: 22266474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collapse temperature of freeze-dried Lactobacillus bulgaricus suspensions and protective media.
    Fonseca F; Passot S; Cunin O; Marin M
    Biotechnol Prog; 2004; 20(1):229-38. PubMed ID: 14763847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of protective agents, freezing temperature, rehydration media on viability of malolactic bacteria subjected to freeze-drying.
    Zhao G; Zhang G
    J Appl Microbiol; 2005; 99(2):333-8. PubMed ID: 16033464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of polymers PVP90 and Ficoll400 on storage stability and viability of Lactobacillus coryniformis Si3 freeze-dried in sucrose.
    Schoug Å; Mahlin D; Jonson M; Håkansson S
    J Appl Microbiol; 2010 Mar; 108(3):1032-1040. PubMed ID: 19735322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein purification process engineering. Freeze drying: A practical overview.
    Gatlin LA; Nail SL
    Bioprocess Technol; 1994; 18():317-67. PubMed ID: 7764173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal analysis of tertiary butyl alcohol/sucrose/water ternary system.
    Zuo JG; Hua TC; Liu BL; Zhou GY
    Cryo Letters; 2005; 26(5):289-96. PubMed ID: 19827244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the sucrose/glycine/water system by differential scanning calorimetry and freeze-drying microscopy.
    Kasraian K; Spitznagel TM; Juneau JA; Yim K
    Pharm Dev Technol; 1998 May; 3(2):233-9. PubMed ID: 9653761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freeze-drying of lactic acid bacteria.
    Fonseca F; Cenard S; Passot S
    Methods Mol Biol; 2015; 1257():477-88. PubMed ID: 25428024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formulations of sugars with amino acids or mannitol--influence of concentration ratio on the properties of the freeze-concentrate and the lyophilizate.
    Lueckel B; Bodmer D; Helk B; Leuenberger H
    Pharm Dev Technol; 1998 Aug; 3(3):325-36. PubMed ID: 9742553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water activity-temperature state diagrams of freeze-dried Lactobacillus acidophilus (La-5): influence of physical state on bacterial survival during storage.
    Kurtmann L; Carlsen CU; Skibsted LH; Risbo J
    Biotechnol Prog; 2009; 25(1):265-70. PubMed ID: 19224603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria.
    Strasser S; Neureiter M; Geppl M; Braun R; Danner H
    J Appl Microbiol; 2009 Jul; 107(1):167-77. PubMed ID: 19302330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of freeze-drying on viability and in vitro probiotic properties of a mixture of lactic acid bacteria and yeasts isolated from kefir.
    Bolla PA; Serradell Mde L; de Urraza PJ; De Antoni GL
    J Dairy Res; 2011 Feb; 78(1):15-22. PubMed ID: 20822567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The physico-chemical basis for the freeze-drying process.
    MacKenzie AP
    Dev Biol Stand; 1976 Oct; 36():51-67. PubMed ID: 1030437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of freezing procedure and annealing on the physico-chemical properties and the formation of mannitol hydrate in mannitol-sucrose-NaCl formulations.
    Hawe A; Friess W
    Eur J Pharm Biopharm; 2006 Nov; 64(3):316-25. PubMed ID: 16875806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical freezing rate in freeze drying nanocrystal dispersions.
    Lee J; Cheng Y
    J Control Release; 2006 Mar; 111(1-2):185-92. PubMed ID: 16430987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freeze-drying of tert-butyl alcohol/water cosolvent systems: effects of formulation and process variables on residual solvents.
    Wittaya-Areekul S; Nail SL
    J Pharm Sci; 1998 Apr; 87(4):491-5. PubMed ID: 9548903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined influence of fermentation and drying conditions on survival and metabolic activity of starter and probiotic cultures after low-temperature vacuum drying.
    Bauer SA; Schneider S; Behr J; Kulozik U; Foerst P
    J Biotechnol; 2012 Jun; 159(4):351-7. PubMed ID: 21723344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of controlled ice nucleation on primary drying stage and protein recovery in vials cooled in a modified freeze-dryer.
    Passot S; Tréléa IC; Marin M; Galan M; Morris GJ; Fonseca F
    J Biomech Eng; 2009 Jul; 131(7):074511. PubMed ID: 19640147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.