BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 16756993)

  • 1. Structural basis of substrate specificity in human glyoxylate reductase/hydroxypyruvate reductase.
    Booth MP; Conners R; Rumsby G; Brady RL
    J Mol Biol; 2006 Jun; 360(1):178-89. PubMed ID: 16756993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectrophotometric Assays for Measuring Hydroxypyruvate Reductase Activity.
    Liepman AH; Jaworski M; Ramirez-Lopez C
    Methods Mol Biol; 2024; 2792():77-81. PubMed ID: 38861079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of human glycolate oxidase in complex with the inhibitor 4-carboxy-5-[(4-chlorophenyl)sulfanyl]-1,2,3-thiadiazole.
    Bourhis JM; Vignaud C; Pietrancosta N; Guéritte F; Guénard D; Lederer F; Lindqvist Y
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Dec; 65(Pt 12):1246-53. PubMed ID: 20054120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Liver Kidney Transplantation in a Primary Type 2 Hyperoxaluria With Corrected TOF and Severe Cardiomyopathy: A Case Report.
    Subramanian N; Yadav A; Kumar JS; Abraham GP
    J Clin Exp Hepatol; 2024; 14(5):101425. PubMed ID: 38721383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A molecular journey on the pathogenesis of primary hyperoxaluria.
    Cellini B
    Curr Opin Nephrol Hypertens; 2024 Jul; 33(4):398-404. PubMed ID: 38602143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolomics and bioinformatic analyses to determine the effects of oxygen exposure within longissimus lumborum steak on beef discoloration.
    Denzer ML; Pfeiffer M; Mafi GG; Ramanathan R
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 37184234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa-Porthos axis in Drosophila.
    Emtenani S; Martin ET; Gyoergy A; Bicher J; Genger JW; Köcher T; Akhmanova M; Guarda M; Roblek M; Bergthaler A; Hurd TR; Rangan P; Siekhaus DE
    EMBO J; 2022 Jun; 41(12):e109049. PubMed ID: 35319107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perspectives in primary hyperoxaluria - historical, current and future clinical interventions.
    Shee K; Stoller ML
    Nat Rev Urol; 2022 Mar; 19(3):137-146. PubMed ID: 34880452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precision medicine - networks to the rescue.
    Yadav A; Vidal M; Luck K
    Curr Opin Biotechnol; 2020 Jun; 63():177-189. PubMed ID: 32199228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An aldo-keto reductase with 2-keto-l-gulonate reductase activity functions in l-tartaric acid biosynthesis from vitamin C in
    Jia Y; Burbidge CA; Sweetman C; Schutz E; Soole K; Jenkins C; Hancock RD; Bruning JB; Ford CM
    J Biol Chem; 2019 Nov; 294(44):15932-15946. PubMed ID: 31488549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification, substrate specificity and structural features of D-2-hydroxyacid dehydrogenases: 2HADH knowledgebase.
    Matelska D; Shabalin IG; Jabłońska J; Domagalski MJ; Kutner J; Ginalski K; Minor W
    BMC Evol Biol; 2018 Dec; 18(1):199. PubMed ID: 30577795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A resource of variant effect predictions of single nucleotide variants in model organisms.
    Wagih O; Galardini M; Busby BP; Memon D; Typas A; Beltrao P
    Mol Syst Biol; 2018 Dec; 14(12):e8430. PubMed ID: 30573687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis of primary hyperoxaluria: clues to innovative treatments.
    Dindo M; Conter C; Oppici E; Ceccarelli V; Marinucci L; Cellini B
    Urolithiasis; 2019 Feb; 47(1):67-78. PubMed ID: 30430197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural, Biochemical, and Evolutionary Characterizations of Glyoxylate/Hydroxypyruvate Reductases Show Their Division into Two Distinct Subfamilies.
    Kutner J; Shabalin IG; Matelska D; Handing KB; Gasiorowska O; Sroka P; Gorna MW; Ginalski K; Wozniak K; Minor W
    Biochemistry; 2018 Feb; 57(6):963-977. PubMed ID: 29309127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering a d-lactate dehydrogenase that can super-efficiently utilize NADPH and NADH as cofactors.
    Meng H; Liu P; Sun H; Cai Z; Zhou J; Lin J; Li Y
    Sci Rep; 2016 Apr; 6():24887. PubMed ID: 27109778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into the mechanism of substrates trafficking in Glyoxylate/Hydroxypyruvate reductases.
    Lassalle L; Engilberge S; Madern D; Vauclare P; Franzetti B; Girard E
    Sci Rep; 2016 Feb; 6():20629. PubMed ID: 26865263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The D-Lactate Dehydrogenase from Sporolactobacillus inulinus Also Possessing Reversible Deamination Activity.
    Zhu L; Xu X; Wang L; Dong H; Yu B
    PLoS One; 2015; 10(9):e0139066. PubMed ID: 26398356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-guided design of a high affinity inhibitor to human CtBP.
    Hilbert BJ; Morris BL; Ellis KC; Paulsen JL; Schiffer CA; Grossman SR; Royer WE
    ACS Chem Biol; 2015 Apr; 10(4):1118-27. PubMed ID: 25636004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of human CtBP in complex with substrate MTOB reveal active site features useful for inhibitor design.
    Hilbert BJ; Grossman SR; Schiffer CA; Royer WE
    FEBS Lett; 2014 May; 588(9):1743-8. PubMed ID: 24657618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glyoxalate reductase/hydroxypyruvate reductase interacts with the sodium-dependent vitamin C transporter-1 to regulate cellular vitamin C homeostasis.
    Subramanian VS; Nabokina SM; Patton JR; Marchant JS; Moradi H; Said HM
    Am J Physiol Gastrointest Liver Physiol; 2013 Jun; 304(12):G1079-86. PubMed ID: 23599041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.