These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. New insights into the mechanism of substrates trafficking in Glyoxylate/Hydroxypyruvate reductases. Lassalle L; Engilberge S; Madern D; Vauclare P; Franzetti B; Girard E Sci Rep; 2016 Feb; 6():20629. PubMed ID: 26865263 [TBL] [Abstract][Full Text] [Related]
3. Structure and substrate docking of a hydroxy(phenyl)pyruvate reductase from the higher plant Coleus blumei Benth. Janiak V; Petersen M; Zentgraf M; Klebe G; Heine A Acta Crystallogr D Biol Crystallogr; 2010 May; 66(Pt 5):593-603. PubMed ID: 20445235 [TBL] [Abstract][Full Text] [Related]
4. Genetic basis of primary hyperoxaluria type II. Webster KE; Cramer SD Mol Urol; 2000; 4(4):355-64. PubMed ID: 11156703 [TBL] [Abstract][Full Text] [Related]
5. The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Cramer SD; Ferree PM; Lin K; Milliner DS; Holmes RP Hum Mol Genet; 1999 Oct; 8(11):2063-9. PubMed ID: 10484776 [TBL] [Abstract][Full Text] [Related]
6. Molecular analysis of the glyoxylate reductase (GRHPR) gene and description of mutations underlying primary hyperoxaluria type 2. Cregeen DP; Williams EL; Hulton S; Rumsby G Hum Mutat; 2003 Dec; 22(6):497. PubMed ID: 14635115 [TBL] [Abstract][Full Text] [Related]
7. Crystal structures of human Delta4-3-ketosteroid 5beta-reductase (AKR1D1) reveal the presence of an alternative binding site responsible for substrate inhibition. Faucher F; Cantin L; Luu-The V; Labrie F; Breton R Biochemistry; 2008 Dec; 47(51):13537-46. PubMed ID: 19075558 [TBL] [Abstract][Full Text] [Related]
8. Recent developments in our understanding of primary hyperoxaluria type 2. Cregeen DP; Rumsby G J Am Soc Nephrol; 1999 Nov; 10 Suppl 14():S348-50. PubMed ID: 10541261 [TBL] [Abstract][Full Text] [Related]
9. Novel mutation in the GRHPR gene in a Chinese patient with primary hyperoxaluria type 2 requiring renal transplantation from a living related donor. Lam CW; Yuen YP; Lai CK; Tong SF; Lau LK; Tong KL; Chan YW Am J Kidney Dis; 2001 Dec; 38(6):1307-10. PubMed ID: 11728965 [TBL] [Abstract][Full Text] [Related]
10. Late diagnosis of primary hyperoxaluria type 2 in the adult: effect of a novel mutation in GRHPR gene on enzymatic activity and molecular modeling. Levin-Iaina N; Dinour D; Romero L; Ron R; Brady RL; Cramer SD; Holtzman EJ J Urol; 2009 May; 181(5):2146-51. PubMed ID: 19296982 [TBL] [Abstract][Full Text] [Related]
11. Identification of catalytically important amino acid residues for enzymatic reduction of glyoxylate in plants. Hoover GJ; Jørgensen R; Rochon A; Bajwa VS; Merrill AR; Shelp BJ Biochim Biophys Acta; 2013 Dec; 1834(12):2663-71. PubMed ID: 24076009 [TBL] [Abstract][Full Text] [Related]
12. Structure of tropinone reductase-II complexed with NADP+ and pseudotropine at 1.9 A resolution: implication for stereospecific substrate binding and catalysis. Yamashita A; Kato H; Wakatsuki S; Tomizaki T; Nakatsu T; Nakajima K; Hashimoto T; Yamada Y; Oda J Biochemistry; 1999 Jun; 38(24):7630-7. PubMed ID: 10387002 [TBL] [Abstract][Full Text] [Related]
13. Dissecting the catalytic mechanism of a plant beta-D-glucan glucohydrolase through structural biology using inhibitors and substrate analogues. Hrmova M; Fincher GB Carbohydr Res; 2007 Sep; 342(12-13):1613-23. PubMed ID: 17548065 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure and enzyme kinetics of the (S)-specific 1-phenylethanol dehydrogenase of the denitrifying bacterium strain EbN1. Höffken HW; Duong M; Friedrich T; Breuer M; Hauer B; Reinhardt R; Rabus R; Heider J Biochemistry; 2006 Jan; 45(1):82-93. PubMed ID: 16388583 [TBL] [Abstract][Full Text] [Related]
15. Capturing enzyme structure prior to reaction initiation: tropinone reductase-II-substrate complexes. Yamashita A; Endo M; Higashi T; Nakatsu T; Yamada Y; Oda J; Kato H Biochemistry; 2003 May; 42(19):5566-73. PubMed ID: 12741812 [TBL] [Abstract][Full Text] [Related]
16. Structural, Biochemical, and Evolutionary Characterizations of Glyoxylate/Hydroxypyruvate Reductases Show Their Division into Two Distinct Subfamilies. Kutner J; Shabalin IG; Matelska D; Handing KB; Gasiorowska O; Sroka P; Gorna MW; Ginalski K; Wozniak K; Minor W Biochemistry; 2018 Feb; 57(6):963-977. PubMed ID: 29309127 [TBL] [Abstract][Full Text] [Related]
17. Crystal structures and catalytic mechanism of the Arabidopsis cinnamyl alcohol dehydrogenases AtCAD5 and AtCAD4. Youn B; Camacho R; Moinuddin SG; Lee C; Davin LB; Lewis NG; Kang C Org Biomol Chem; 2006 May; 4(9):1687-97. PubMed ID: 16633561 [TBL] [Abstract][Full Text] [Related]
18. Crystal structures of shikimate dehydrogenase AroE from Thermus thermophilus HB8 and its cofactor and substrate complexes: insights into the enzymatic mechanism. Bagautdinov B; Kunishima N J Mol Biol; 2007 Oct; 373(2):424-38. PubMed ID: 17825835 [TBL] [Abstract][Full Text] [Related]
19. Structural enzymological studies of 2-enoyl thioester reductase of the human mitochondrial FAS II pathway: new insights into its substrate recognition properties. Chen ZJ; Pudas R; Sharma S; Smart OS; Juffer AH; Hiltunen JK; Wierenga RK; Haapalainen AM J Mol Biol; 2008 Jun; 379(4):830-44. PubMed ID: 18479707 [TBL] [Abstract][Full Text] [Related]
20. Severe child form of primary hyperoxaluria type 2 - a case report revealing consequence of GRHPR deficiency on metabolism. Konkoľová J; Chandoga J; Kováčik J; Repiský M; Kramarová V; Paučinová I; Böhmer D BMC Med Genet; 2017 May; 18(1):59. PubMed ID: 28569194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]