These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 16757052)
1. Improvement of thermostability of fungal xylanase by using site-directed mutagenesis. Sriprang R; Asano K; Gobsuk J; Tanapongpipat S; Champreda V; Eurwilaichitr L J Biotechnol; 2006 Dec; 126(4):454-62. PubMed ID: 16757052 [TBL] [Abstract][Full Text] [Related]
2. Improvement of the thermostability and catalytic activity of a mesophilic family 11 xylanase by N-terminus replacement. Sun JY; Liu MQ; Xu YL; Xu ZR; Pan L; Gao H Protein Expr Purif; 2005 Jul; 42(1):122-30. PubMed ID: 15939297 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of the activity and alkaline pH stability of Thermobifida fusca xylanase A by directed evolution. Wang Q; Xia T Biotechnol Lett; 2008 May; 30(5):937-44. PubMed ID: 18292971 [TBL] [Abstract][Full Text] [Related]
4. Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis. Zhang ZG; Yi ZL; Pei XQ; Wu ZL Bioresour Technol; 2010 Dec; 101(23):9272-8. PubMed ID: 20691586 [TBL] [Abstract][Full Text] [Related]
5. Sequencing and expression of the xylanase gene 2 from Trichoderma reesei Rut C-30 and characterization of the recombinant enzyme and its activity on xylan. Jun H; Bing Y; Keying Z; Xuemei D; Daiwen C J Mol Microbiol Biotechnol; 2009; 17(3):101-9. PubMed ID: 19556747 [TBL] [Abstract][Full Text] [Related]
6. Five mutations in N-terminus confer thermostability on mesophilic xylanase. Zhang S; Zhang K; Chen X; Chu X; Sun F; Dong Z Biochem Biophys Res Commun; 2010 Apr; 395(2):200-6. PubMed ID: 20361933 [TBL] [Abstract][Full Text] [Related]
7. Expression of a Trichoderma reesei beta-xylanase gene in Escherichia coli and activity of the enzyme on fiber-bound substrates. Jun H; Bing Y; Keying Z; Xuemei D; Daiwen C Protein Expr Purif; 2009 Sep; 67(1):1-6. PubMed ID: 18725302 [TBL] [Abstract][Full Text] [Related]
8. High-level production of recombinant fungal endo-beta-1,4-xylanase in the methylotrophic yeast Pichia pastoris. Berrin JG; Williamson G; Puigserver A; Chaix JC; McLauchlan WR; Juge N Protein Expr Purif; 2000 Jun; 19(1):179-87. PubMed ID: 10833405 [TBL] [Abstract][Full Text] [Related]
9. Directed evolution of the thermostable xylanase from Thermomyces lanuginosus. Stephens DE; Rumbold K; Permaul K; Prior BA; Singh S J Biotechnol; 2007 Jan; 127(3):348-54. PubMed ID: 16893583 [TBL] [Abstract][Full Text] [Related]
10. Site-directed mutagenesis and thermostability of xylanase XYNB from Aspergillus niger 400264. Xie J; Song L; Li X; Yi X; Xu H; Li J; Qiao D; Cao Y Curr Microbiol; 2011 Jan; 62(1):242-8. PubMed ID: 20593181 [TBL] [Abstract][Full Text] [Related]
11. Engineering increased thermostability in the thermostable GH-11 xylanase from Thermobacillus xylanilyticus. Paës G; O'Donohue MJ J Biotechnol; 2006 Sep; 125(3):338-50. PubMed ID: 16644050 [TBL] [Abstract][Full Text] [Related]
12. Exploration of a N-terminal disulfide bridge to improve the thermostability of a GH11 xylanase from Aspergillus niger. Zhou CY; Li TB; Wang YT; Zhu XS; Kang J J Gen Appl Microbiol; 2016; 62(2):83-9. PubMed ID: 27118076 [TBL] [Abstract][Full Text] [Related]
13. Molecular characterization of a glycosyl hydrolase family 10 xylanase from Aspergillus niger. Do TT; Quyen DT; Nguyen TN; Nguyen VT Protein Expr Purif; 2013 Dec; 92(2):196-202. PubMed ID: 24084008 [TBL] [Abstract][Full Text] [Related]
14. Overproduction and characterization of xylanase B from Aspergillus niger. Levasseur A; Asther M; Record E Can J Microbiol; 2005 Feb; 51(2):177-83. PubMed ID: 16091777 [TBL] [Abstract][Full Text] [Related]
15. Study of the active site residues of a glycoside hydrolase family 8 xylanase. Collins T; De Vos D; Hoyoux A; Savvides SN; Gerday C; Van Beeumen J; Feller G J Mol Biol; 2005 Nov; 354(2):425-35. PubMed ID: 16246370 [TBL] [Abstract][Full Text] [Related]
16. Computational design-based molecular engineering of the glycosyl hydrolase family 11 B. subtilis XynA endoxylanase improves its acid stability. Beliën T; Joye IJ; Delcour JA; Courtin CM Protein Eng Des Sel; 2009 Oct; 22(10):587-96. PubMed ID: 19531602 [TBL] [Abstract][Full Text] [Related]
17. Improvement in thermostability of metagenomic GH11 endoxylanase (Mxyl) by site-directed mutagenesis and its applicability in paper pulp bleaching process. Satyanarayana DV J Ind Microbiol Biotechnol; 2013 Dec; 40(12):1373-81. PubMed ID: 24100791 [TBL] [Abstract][Full Text] [Related]
18. Cloning of an epoxide hydrolase-encoding gene from Aspergillus niger M200, overexpression in E. coli, and modification of activity and enantioselectivity of the enzyme by protein engineering. Kotik M; Stepánek V; Kyslík P; Maresová H J Biotechnol; 2007 Oct; 132(1):8-15. PubMed ID: 17875334 [TBL] [Abstract][Full Text] [Related]
19. Improvement of Trichoderma reesei xylanase II thermal stability by serine to threonine surface mutations. Zouari Ayadi D; Hmida Sayari A; Ben Hlima H; Ben Mabrouk S; Mezghani M; Bejar S Int J Biol Macromol; 2015 Jan; 72():163-70. PubMed ID: 25158289 [TBL] [Abstract][Full Text] [Related]
20. An extracellular endo-1,4-beta-xylanase from Aspergillus japonicus: Purification, properties, and characterization of the encoding gene. Wakiyama M; Yoshihara K; Hayashi S; Ohta K J Biosci Bioeng; 2010 Mar; 109(3):227-9. PubMed ID: 20159568 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]