BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 16757118)

  • 21. G-Protein types involved in calcium channel inhibition at a presynaptic nerve terminal.
    Mirotznik RR; Zheng X; Stanley EF
    J Neurosci; 2000 Oct; 20(20):7614-21. PubMed ID: 11027221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcium influx and transmitter release in a fast CNS synapse.
    Borst JG; Sakmann B
    Nature; 1996 Oct; 383(6599):431-4. PubMed ID: 8837774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The timing of phasic transmitter release is Ca2+-dependent and lacks a direct influence of presynaptic membrane potential.
    Felmy F; Neher E; Schneggenburger R
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):15200-5. PubMed ID: 14630950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Receptor-mediated regulation of calcium channels and neurotransmitter release.
    Miller RJ
    FASEB J; 1990 Dec; 4(15):3291-9. PubMed ID: 1979294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Location of calcium transporters at presynaptic terminals.
    Juhaszova M; Church P; Blaustein MP; Stanley EF
    Eur J Neurosci; 2000 Mar; 12(3):839-46. PubMed ID: 10762313
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RIM proteins and their role in synapse function.
    Mittelstaedt T; Alvaréz-Baron E; Schoch S
    Biol Chem; 2010 Jun; 391(6):599-606. PubMed ID: 20370319
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rab3a-mediated vesicle recruitment regulates short-term plasticity at the mouse diaphragm synapse.
    Coleman WL; Bykhovskaia M
    Mol Cell Neurosci; 2009 Jun; 41(2):286-96. PubMed ID: 19348946
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A proteomic screen for presynaptic terminal N-type calcium channel (CaV2.2) binding partners.
    Khanna R; Zougman A; Stanley EF
    J Biochem Mol Biol; 2007 May; 40(3):302-14. PubMed ID: 17562281
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glycerotoxin stimulates neurotransmitter release from N-type Ca2+ channel expressing neurons.
    Schenning M; Proctor DT; Ragnarsson L; Barbier J; Lavidis NA; Molgó JJ; Zamponi GW; Schiavo G; Meunier FA
    J Neurochem; 2006 Aug; 98(3):894-904. PubMed ID: 16749905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ca(2+) channels and transmitter release at the active zone.
    Schneggenburger R; Han Y; Kochubey O
    Cell Calcium; 2012; 52(3-4):199-207. PubMed ID: 22682961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Redundancy of Cav2.1 channel accessory subunits in transmitter release at the mouse neuromuscular junction.
    Kaja S; Todorov B; van de Ven RC; Ferrari MD; Frants RR; van den Maagdenberg AM; Plomp JJ
    Brain Res; 2007 Apr; 1143():92-101. PubMed ID: 17320843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One-vesicle hypothesis for neurotransmitter release: a possible molecular mechanism.
    Yusim K; Parnas H; Segel LA
    Bull Math Biol; 2001 Nov; 63(6):1025-40. PubMed ID: 11732174
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct G protein modulation of Cav2 calcium channels.
    Tedford HW; Zamponi GW
    Pharmacol Rev; 2006 Dec; 58(4):837-62. PubMed ID: 17132857
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial organization and dynamic properties of neurotransmitter release sites in the enteric nervous system.
    Vanden Berghe P; Klingauf J
    Neuroscience; 2007 Mar; 145(1):88-99. PubMed ID: 17197103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RIM determines Ca²+ channel density and vesicle docking at the presynaptic active zone.
    Han Y; Kaeser PS; Südhof TC; Schneggenburger R
    Neuron; 2011 Jan; 69(2):304-16. PubMed ID: 21262468
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The synaptic vesicle cluster: a source of endocytic proteins during neurotransmitter release.
    Shupliakov O
    Neuroscience; 2009 Jan; 158(1):204-10. PubMed ID: 18440714
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals.
    Nishimune H; Sanes JR; Carlson SS
    Nature; 2004 Dec; 432(7017):580-7. PubMed ID: 15577901
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Consequences of molecular-level Ca2+ channel and synaptic vesicle colocalization for the Ca2+ microdomain and neurotransmitter exocytosis: a monte carlo study.
    Shahrezaei V; Delaney KR
    Biophys J; 2004 Oct; 87(4):2352-64. PubMed ID: 15454435
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CAPS-1 and CAPS-2 are essential synaptic vesicle priming proteins.
    Jockusch WJ; Speidel D; Sigler A; Sørensen JB; Varoqueaux F; Rhee JS; Brose N
    Cell; 2007 Nov; 131(4):796-808. PubMed ID: 18022372
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The inhibition of release by mGlu7 receptors is independent of the Ca2+ channel type but associated to GABAB and adenosine A1 receptors.
    Martín R; Ladera C; Bartolomé-Martín D; Torres M; Sánchez-Prieto J
    Neuropharmacology; 2008 Sep; 55(4):464-73. PubMed ID: 18514236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.