BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

653 related articles for article (PubMed ID: 16757135)

  • 1. The evolution of thermal adaptation in polar fish.
    Verde C; Parisi E; di Prisco G
    Gene; 2006 Dec; 385():137-45. PubMed ID: 16757135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The adaptation of polar fishes to climatic changes: Structure, function and phylogeny of haemoglobin.
    Verde C; Giordano D; di Prisco G
    IUBMB Life; 2008 Jan; 60(1):29-40. PubMed ID: 18379990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogeography and adaptation of Notothenioid fish: hemoglobin function and globin-gene evolution.
    di Prisco G; Eastman JT; Giordano D; Parisi E; Verde C
    Gene; 2007 Aug; 398(1-2):143-55. PubMed ID: 17553637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The hemoglobins of the sub-Antarctic fish Cottoperca gobio, a phyletically basal species--oxygen-binding equilibria, kinetics and molecular dynamics.
    Giordano D; Boechi L; Vergara A; Martí MA; Samuni U; Dantsker D; Grassi L; Estrin DA; Friedman JM; Mazzarella L; di Prisco G; Verde C
    FEBS J; 2009 Apr; 276(8):2266-77. PubMed ID: 19292863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemoglobin structure/function and globin-gene evolution in the Arctic fish Liparis tunicatus.
    Giordano D; Vergara A; Lee HC; Peisach J; Balestrieri M; Mazzarella L; Parisi E; di Prisco G; Verde C
    Gene; 2007 Dec; 406(1-2):58-68. PubMed ID: 17618067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution of polar fish hemoglobin: a phylogenetic analysis of the ancestral amino acid residues linked to the root effect.
    Verde C; Parisi E; di Prisco G
    J Mol Evol; 2003; 57 Suppl 1():S258-67. PubMed ID: 15008423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life at body temperatures below 0 degrees C: the physiology and biochemistry of Antarctic fishes.
    Sidell BD
    Gravit Space Biol Bull; 2000 Jun; 13(2):25-34. PubMed ID: 11543278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hemoglobins of fishes living at polar latitudes - current knowledge on structural adaptations in a changing environment.
    Verde C; Vergara A; Mazzarella L; di Prisco G
    Curr Protein Pept Sci; 2008 Dec; 9(6):578-90. PubMed ID: 19075748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular adaptations in Antarctic fish and marine microorganisms.
    Giordano D; Russo R; di Prisco G; Verde C
    Mar Genomics; 2012 Jun; 6():1-6. PubMed ID: 22578653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The oxygen transport system in three species of the boreal fish family Gadidae. Molecular phylogeny of hemoglobin.
    Verde C; Balestrieri M; de Pascale D; Pagnozzi D; Lecointre G; di Prisco G
    J Biol Chem; 2006 Aug; 281(31):22073-22084. PubMed ID: 16717098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical adaptations of notothenioid fishes: comparisons between cold temperate South American and New Zealand species and Antarctic species.
    Coppes Petricorena ZL; Somero GN
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jul; 147(3):799-807. PubMed ID: 17293146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional antifreeze glycoprotein genes in temperate-water New Zealand nototheniid fish infer an Antarctic evolutionary origin.
    Cheng CH; Chen L; Near TJ; Jin Y
    Mol Biol Evol; 2003 Nov; 20(11):1897-908. PubMed ID: 12885956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How will fish that evolved at constant sub-zero temperatures cope with global warming? Notothenioids as a case study.
    Patarnello T; Verde C; di Prisco G; Bargelloni L; Zane L
    Bioessays; 2011 Apr; 33(4):260-8. PubMed ID: 21290397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish.
    Abele D; Puntarulo S
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Aug; 138(4):405-15. PubMed ID: 15369829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cold-adapted Antarctic fish: the discovery of neuroglobin in the dominant suborder Notothenioidei.
    Cheng CH; di Prisco G; Verde C
    Gene; 2009 Mar; 433(1-2):100-1. PubMed ID: 19135508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive Darwinian selection operating on the immunoglobulin heavy chain of Antarctic fishes.
    Ota T; Nguyen TA; Huang E; Detrich HW; Amemiya CT
    J Exp Zool B Mol Dev Evol; 2003 Feb; 295(1):45-58. PubMed ID: 12548542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure, function and molecular adaptations of haemoglobins of the polar cartilaginous fish Bathyraja eatonii and Raja hyperborea.
    Verde C; De Rosa MC; Giordano D; Mosca D; De Pascale D; Raiola L; Cocca E; Carratore V; Giardina B; Di Prisco G
    Biochem J; 2005 Jul; 389(Pt 2):297-306. PubMed ID: 15807670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure/function and phylogeny of hemoglobins of polar fishes.
    Verde C; di Prisco G
    Micron; 2004; 35(1-2):77-80. PubMed ID: 15036298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of branchial artery tone in fish: effects of environmental temperature and phylogeny.
    Hill JV; Egginton S
    Physiol Biochem Zool; 2010; 83(1):33-42. PubMed ID: 19938979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acclimation and thermal tolerance in Antarctic marine ectotherms.
    Peck LS; Morley SA; Richard J; Clark MS
    J Exp Biol; 2014 Jan; 217(Pt 1):16-22. PubMed ID: 24353200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.