BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16757340)

  • 1. Protein-fragment complementation assays (PCA) in small GTPase research and drug discovery.
    Westwick JK; Michnick SW
    Methods Enzymol; 2006; 407():388-401. PubMed ID: 16757340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical genetic strategies to delineate MAP kinase signaling pathways using protein-fragment complementation assays (PCA).
    Michnick SW; MacDonald ML; Westwick JK
    Methods; 2006 Nov; 40(3):287-93. PubMed ID: 17071407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free screening of drug-protein interactions by time-resolved Fourier transform infrared spectroscopic assays exemplified by Ras interactions.
    Kötting C; Suveyzdis Y; Bojja RS; Metzler-Nolte N; Gerwert K
    Appl Spectrosc; 2010 Sep; 64(9):967-72. PubMed ID: 20828432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping biochemical networks with protein-fragment complementation assays.
    Remy I; Michnick SW
    Methods Mol Biol; 2004; 261():411-26. PubMed ID: 15064473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a yeast protein fragment complementation assay (PCA) system using dihydrofolate reductase (DHFR) with specific additives.
    Shibasaki S; Sakata K; Ishii J; Kondo A; Ueda M
    Appl Microbiol Biotechnol; 2008 Sep; 80(4):735-43. PubMed ID: 18670770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying off-target effects and hidden phenotypes of drugs in human cells.
    MacDonald ML; Lamerdin J; Owens S; Keon BH; Bilter GK; Shang Z; Huang Z; Yu H; Dias J; Minami T; Michnick SW; Westwick JK
    Nat Chem Biol; 2006 Jun; 2(6):329-37. PubMed ID: 16680159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring drug action in the cellular context using protein-fragment complementation assays.
    Yu H; West M; Keon BH; Bilter GK; Owens S; Lamerdin J; Westwick JK
    Assay Drug Dev Technol; 2003 Dec; 1(6):811-22. PubMed ID: 15090227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule imaging analysis of Ras activation in living cells.
    Murakoshi H; Iino R; Kobayashi T; Fujiwara T; Ohshima C; Yoshimura A; Kusumi A
    Proc Natl Acad Sci U S A; 2004 May; 101(19):7317-22. PubMed ID: 15123831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small GTPase Ras and Rho expression in rat osteoblasts during spaceflight.
    Kumei Y; Shimokawa H; Ohya K; Katano H; Akiyama H; Hirano M; Morita S
    Ann N Y Acad Sci; 2007 Jan; 1095():292-9. PubMed ID: 17404041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ras effector pathways modulate scatter factor-stimulated NF-kappaB signaling and protection against DNA damage.
    Fan S; Meng Q; Laterra JJ; Rosen EM
    Oncogene; 2007 Jul; 26(33):4774-96. PubMed ID: 17297451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time in vitro measurement of intrinsic and Ras GAP-mediated GTP hydrolysis.
    Shutes A; Der CJ
    Methods Enzymol; 2006; 407():9-22. PubMed ID: 16757310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring spatio-temporal regulation of Ras and Rho GTPase with GFP-based FRET probes.
    Nakamura T; Aoki K; Matsuda M
    Methods; 2005 Oct; 37(2):146-53. PubMed ID: 16288890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of the Ras binding domain of c-Raf for biochemical and live-cell analysis of Ras activation.
    Rubio I
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):662-3. PubMed ID: 16042568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of PDGF-induced reactive oxygen species (ROS) generation and signal transduction in human lens epithelial cells.
    Chen KC; Zhou Y; Zhang W; Lou MF
    Mol Vis; 2007 Mar; 13():374-87. PubMed ID: 17392688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flagellin and lipopolysaccharide stimulate the MEK-ERK signaling pathway in chicken heterophils through differential activation of the small GTPases, Ras and Rap1.
    Kogut MH; Genovese KJ; He H
    Mol Immunol; 2007 Mar; 44(7):1729-36. PubMed ID: 17045653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cDNA library functional screening strategy based on fluorescent protein complementation assays to identify novel components of signaling pathways.
    Remy I; Michnick SW
    Methods; 2004 Apr; 32(4):381-8. PubMed ID: 15003600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effector recruitment method to study spatially regulated activation of Ras and Rho GTPases.
    Huff LP; DeCristo MJ; Cox AD
    Methods Mol Biol; 2014; 1120():263-83. PubMed ID: 24470032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic visualization of expressed gene networks.
    Remy I; Michnick SW
    J Cell Physiol; 2003 Sep; 196(3):419-29. PubMed ID: 12891699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the integrin-linked kinase interactome using SILAC.
    Dobreva I; Fielding A; Foster LJ; Dedhar S
    J Proteome Res; 2008 Apr; 7(4):1740-9. PubMed ID: 18327965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational model explains high activity and rapid cycling of Rho GTPases within protein complexes.
    Goryachev AB; Pokhilko AV
    PLoS Comput Biol; 2006 Dec; 2(12):e172. PubMed ID: 17140284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.