BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 16757576)

  • 21. Involvement of phage phi29 DNA polymerase and terminal protein subdomains in conferring specificity during initiation of protein-primed DNA replication.
    Pérez-Arnaiz P; Longás E; Villar L; Lázaro JM; Salas M; de Vega M
    Nucleic Acids Res; 2007; 35(21):7061-73. PubMed ID: 17913744
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of mutations on the partitioning of DNA substrates between the polymerase and 3'-5' exonuclease sites of DNA polymerase I (Klenow fragment).
    Lam WC; Van der Schans EJ; Joyce CM; Millar DP
    Biochemistry; 1998 Feb; 37(6):1513-22. PubMed ID: 9484221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A conserved insertion in protein-primed DNA polymerases is involved in primer terminus stabilisation.
    Dufour E; Rodríguez I; Lázaro JM; de Vega M; Salas M
    J Mol Biol; 2003 Aug; 331(4):781-94. PubMed ID: 12909010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Loop of the TPR1 Subdomain of Phi29 DNA Polymerase Plays a Pivotal Role in Primer-Terminus Stabilization at the Polymerization Active Site.
    Del Prado A; Santos E; Lázaro JM; Salas M; de Vega M
    Biomolecules; 2019 Oct; 9(11):. PubMed ID: 31653090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiplexed single-molecule assay for enzymatic activity on flow-stretched DNA.
    Kim S; Blainey PC; Schroeder CM; Xie XS
    Nat Methods; 2007 May; 4(5):397-9. PubMed ID: 17435763
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An aspartic acid residue in TPR-1, a specific region of protein-priming DNA polymerases, is required for the functional interaction with primer terminal protein.
    Dufour E; Méndez J; Lázaro JM; de Vega M; Blanco L; Salas M
    J Mol Biol; 2000 Dec; 304(3):289-300. PubMed ID: 11090274
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structures of an NH2-terminal fragment of T4 DNA polymerase and its complexes with single-stranded DNA and with divalent metal ions.
    Wang J; Yu P; Lin TC; Konigsberg WH; Steitz TA
    Biochemistry; 1996 Jun; 35(25):8110-9. PubMed ID: 8679562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Different behaviors in vivo of mutations in the beta hairpin loop of the DNA polymerases of the closely related phages T4 and RB69.
    Trzemecka A; Płochocka D; Bebenek A
    J Mol Biol; 2009 Jun; 389(5):797-807. PubMed ID: 19409904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of residues of the 29 terminal protein intermediate and priming domains in the formation of a stable and functional heterodimer with the replicative DNA polymerase.
    del Prado A; Villar L; de Vega M; Salas M
    Nucleic Acids Res; 2012 May; 40(9):3886-97. PubMed ID: 22210885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pre-steady-state kinetics of RB69 DNA polymerase and its exo domain mutants: effect of pH and thiophosphoryl linkages on 3'-5' exonuclease activity.
    Wang CX; Zakharova E; Li J; Joyce CM; Wang J; Konigsberg W
    Biochemistry; 2004 Apr; 43(13):3853-61. PubMed ID: 15049692
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic mechanisms governing stable ribonucleotide incorporation in individual DNA polymerase complexes.
    Dahl JM; Wang H; Lázaro JM; Salas M; Lieberman KR
    Biochemistry; 2014 Dec; 53(51):8061-76. PubMed ID: 25478721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional characterization of highly processive protein-primed DNA polymerases from phages Nf and GA-1, endowed with a potent strand displacement capacity.
    Longás E; de Vega M; Lázaro JM; Salas M
    Nucleic Acids Res; 2006; 34(20):6051-63. PubMed ID: 17071961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phi 29 DNA polymerase requires the N-terminal domain to bind terminal protein and DNA primer substrates.
    Truniger V; Lázaro JM; Salas M; Blanco L
    J Mol Biol; 1998 May; 278(4):741-55. PubMed ID: 9614939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A single tyrosine prevents insertion of ribonucleotides in the eukaryotic-type phi29 DNA polymerase.
    Bonnin A; Lázaro JM; Blanco L; Salas M
    J Mol Biol; 1999 Jul; 290(1):241-51. PubMed ID: 10388570
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing DNA polymerase-DNA interactions: examining the template strand in exonuclease complexes using 2-aminopurine fluorescence and acrylamide quenching.
    Tleugabulova D; Reha-Krantz LJ
    Biochemistry; 2007 Jun; 46(22):6559-69. PubMed ID: 17497891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of the "YxGG/A" motif of Phi29 DNA polymerase in protein-primed replication.
    Truniger V; Blanco L; Salas M
    J Mol Biol; 1999 Feb; 286(1):57-69. PubMed ID: 9931249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA polymerase proofreading: active site switching catalyzed by the bacteriophage T4 DNA polymerase.
    Fidalgo da Silva E; Reha-Krantz LJ
    Nucleic Acids Res; 2007; 35(16):5452-63. PubMed ID: 17702757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A specific subdomain in phi29 DNA polymerase confers both processivity and strand-displacement capacity.
    Rodríguez I; Lázaro JM; Blanco L; Kamtekar S; Berman AJ; Wang J; Steitz TA; Salas M; de Vega M
    Proc Natl Acad Sci U S A; 2005 May; 102(18):6407-12. PubMed ID: 15845765
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic DNA helicase-DNA polymerase interactions assure processive replication fork movement.
    Hamdan SM; Johnson DE; Tanner NA; Lee JB; Qimron U; Tabor S; van Oijen AM; Richardson CC
    Mol Cell; 2007 Aug; 27(4):539-49. PubMed ID: 17707227
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The RGD sequence in phage phi29 terminal protein is required for interaction with phi29 DNA polymerase.
    Illana B; Zaballos A; Blanco L; Salas M
    Virology; 1998 Aug; 248(1):12-9. PubMed ID: 9705251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.