BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 16757578)

  • 21. Dynamic state of DNA topology is essential for genome condensation in bacteria.
    Ohniwa RL; Morikawa K; Kim J; Ohta T; Ishihama A; Wada C; Takeyasu K
    EMBO J; 2006 Nov; 25(23):5591-602. PubMed ID: 17093499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The antibiotic microcin B17 is a DNA gyrase poison: characterisation of the mode of inhibition.
    Heddle JG; Blance SJ; Zamble DB; Hollfelder F; Miller DA; Wentzell LM; Walsh CT; Maxwell A
    J Mol Biol; 2001 Apr; 307(5):1223-34. PubMed ID: 11292337
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The mechanism of negative DNA supercoiling: a cascade of DNA-induced conformational changes prepares gyrase for strand passage.
    Gubaev A; Klostermeier D
    DNA Repair (Amst); 2014 Apr; 16():23-34. PubMed ID: 24674625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-molecule study of DNA unlinking by eukaryotic and prokaryotic type-II topoisomerases.
    Charvin G; Bensimon D; Croquette V
    Proc Natl Acad Sci U S A; 2003 Aug; 100(17):9820-5. PubMed ID: 12902541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Norfloxacin-induced DNA cleavage occurs at the dif resolvase locus in Escherichia coli and is the result of interaction with topoisomerase IV.
    Hojgaard A; Szerlong H; Tabor C; Kuempel P
    Mol Microbiol; 1999 Sep; 33(5):1027-36. PubMed ID: 10476036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth inhibition mediated by excess negative supercoiling: the interplay between transcription elongation, R-loop formation and DNA topology.
    Drolet M
    Mol Microbiol; 2006 Feb; 59(3):723-30. PubMed ID: 16420346
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Histone-like protein HU and bacterial DNA topology: suppression of an HU deficiency by gyrase mutations.
    Malik M; Bensaid A; Rouviere-Yaniv J; Drlica K
    J Mol Biol; 1996 Feb; 256(1):66-76. PubMed ID: 8609614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The bacterial nucleoid].
    Gómez-Eichelmann MC; Camacho-Carranza R
    Rev Latinoam Microbiol; 1995; 37(3):281-90. PubMed ID: 8850347
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual inhibition of Staphylococcus aureus DNA gyrase and topoisomerase IV activity by phenylalanine-derived (Z)-5-arylmethylidene rhodanines.
    Werner MM; Patel BA; Talele TT; Ashby CR; Li Z; Zauhar RJ
    Bioorg Med Chem; 2015 Sep; 23(18):6125-37. PubMed ID: 26320664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Roles of topoisomerases in maintaining steady-state DNA supercoiling in Escherichia coli.
    Zechiedrich EL; Khodursky AB; Bachellier S; Schneider R; Chen D; Lilley DM; Cozzarelli NR
    J Biol Chem; 2000 Mar; 275(11):8103-13. PubMed ID: 10713132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The mechanism of inhibition of topoisomerase IV by quinolone antibacterials.
    Khodursky AB; Cozzarelli NR
    J Biol Chem; 1998 Oct; 273(42):27668-77. PubMed ID: 9765303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thirty years of Escherichia coli DNA gyrase: from in vivo function to single-molecule mechanism.
    Nöllmann M; Crisona NJ; Arimondo PB
    Biochimie; 2007 Apr; 89(4):490-9. PubMed ID: 17397985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modification of norfloxacin inhibition of DNA gyrase induced by a 28 KDal DNA binding protein.
    Landini P; Pagani L; Debiaggi M; Cereda PM; Romero E
    Microbiologica; 1989 Jul; 12(3):247-55. PubMed ID: 2550742
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bactericidal activity and target preference of a piperazinyl-cross-linked ciprofloxacin dimer with Staphylococcus aureus and Escherichia coli.
    Zhao X; Quinn B; Kerns R; Drlica K
    J Antimicrob Chemother; 2006 Dec; 58(6):1283-6. PubMed ID: 17003060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Norfloxacin-induced DNA gyrase cleavage complexes block Escherichia coli replication forks, causing double-stranded breaks in vivo.
    Pohlhaus JR; Kreuzer KN
    Mol Microbiol; 2005 Jun; 56(6):1416-29. PubMed ID: 15916595
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The structural basis for substrate specificity in DNA topoisomerase IV.
    Corbett KD; Schoeffler AJ; Thomsen ND; Berger JM
    J Mol Biol; 2005 Aug; 351(3):545-61. PubMed ID: 16023670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Topoisomerases I and III inhibit R-loop formation to prevent unregulated replication in the chromosomal Ter region of Escherichia coli.
    Brochu J; Vlachos-Breton É; Sutherland S; Martel M; Drolet M
    PLoS Genet; 2018 Sep; 14(9):e1007668. PubMed ID: 30222737
    [TBL] [Abstract][Full Text] [Related]  

  • 38. What makes a type IIA topoisomerase a gyrase or a Topo IV?
    Hirsch J; Klostermeier D
    Nucleic Acids Res; 2021 Jun; 49(11):6027-6042. PubMed ID: 33905522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual-targeting properties of the 3-aminopyrrolidyl quinolones, DC-159a and sitafloxacin, against DNA gyrase and topoisomerase IV: contribution to reducing in vitro emergence of quinolone-resistant Streptococcus pneumoniae.
    Okumura R; Hirata T; Onodera Y; Hoshino K; Otani T; Yamamoto T
    J Antimicrob Chemother; 2008 Jul; 62(1):98-104. PubMed ID: 18390884
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New inhibitors of bacterial topoisomerase GyrA/ParC subunits.
    Black MT; Coleman K
    Curr Opin Investig Drugs; 2009 Aug; 10(8):804-10. PubMed ID: 19649925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.