BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 16757580)

  • 1. An expectation-maximization algorithm for probabilistic reconstructions of full-length isoforms from splice graphs.
    Xing Y; Yu T; Wu YN; Roy M; Kim J; Lee C
    Nucleic Acids Res; 2006; 34(10):3150-60. PubMed ID: 16757580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of full-length isoforms from splice graphs.
    Xing Y; Lee C
    Methods Mol Biol; 2008; 452():199-205. PubMed ID: 18566766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The multiassembly problem: reconstructing multiple transcript isoforms from EST fragment mixtures.
    Xing Y; Resch A; Lee C
    Genome Res; 2004 Mar; 14(3):426-41. PubMed ID: 14962984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EasyCluster2: an improved tool for clustering and assembling long transcriptome reads.
    Bevilacqua V; Pietroleonardo N; Giannino E; Stroppa F; Simone D; Pesole G; Picardi E
    BMC Bioinformatics; 2014; 15 Suppl 15(Suppl 15):S7. PubMed ID: 25474441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CircAST: Full-length Assembly and Quantification of Alternatively Spliced Isoforms in Circular RNAs.
    Wu J; Li Y; Wang C; Cui Y; Xu T; Wang C; Wang X; Sha J; Jiang B; Wang K; Hu Z; Guo X; Song X
    Genomics Proteomics Bioinformatics; 2019 Oct; 17(5):522-534. PubMed ID: 32007626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting alternative gene structures from spliced ESTs: a computational approach.
    Bonizzoni P; Mauri G; Pesole G; Picardi E; Pirola Y; Rizzi R
    J Comput Biol; 2009 Jan; 16(1):43-66. PubMed ID: 19119993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PIntron: a fast method for detecting the gene structure due to alternative splicing via maximal pairings of a pattern and a text.
    Pirola Y; Rizzi R; Picardi E; Pesole G; Della Vedova G; Bonizzoni P
    BMC Bioinformatics; 2012 Apr; 13 Suppl 5(Suppl 5):S2. PubMed ID: 22537006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The third and fourth tropomyosin isoforms of Caenorhabditis elegans are expressed in the pharynx and intestines and are essential for development and morphology.
    Anyanful A; Sakube Y; Takuwa K; Kagawa H
    J Mol Biol; 2001 Oct; 313(3):525-37. PubMed ID: 11676537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of tissue-specific human orthologous alternative splice events in pig.
    Nygard AB; Jørgensen CB; Cirera S; Fredholm M
    Anim Biotechnol; 2010 Oct; 21(4):203-16. PubMed ID: 20967640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A probabilistic framework for aligning paired-end RNA-seq data.
    Hu Y; Wang K; He X; Chiang DY; Prins JF; Liu J
    Bioinformatics; 2010 Aug; 26(16):1950-7. PubMed ID: 20576625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long read transcript profiling of ion channel splice isoforms.
    Hall NAL; Husain SM; Lee H; Tunbridge EM
    Methods Enzymol; 2021; 654():345-364. PubMed ID: 34120721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ASPIC: a web resource for alternative splicing prediction and transcript isoforms characterization.
    Castrignanò T; Rizzi R; Talamo IG; De Meo PD; Anselmo A; Bonizzoni P; Pesole G
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W440-3. PubMed ID: 16845044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strengths and weaknesses of EST-based prediction of tissue-specific alternative splicing.
    Gupta S; Zink D; Korn B; Vingron M; Haas SA
    BMC Genomics; 2004 Sep; 5():72. PubMed ID: 15453915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EASED: Extended Alternatively Spliced EST Database.
    Pospisil H; Herrmann A; Bortfeldt RH; Reich JG
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D70-4. PubMed ID: 14681361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative splicing of the Caenorhabditis elegans lev-11 tropomyosin gene is regulated in a tissue-specific manner.
    Watabe E; Ono S; Kuroyanagi H
    Cytoskeleton (Hoboken); 2018 Oct; 75(10):427-436. PubMed ID: 30155988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ECgene: genome-based EST clustering and gene modeling for alternative splicing.
    Kim N; Shin S; Lee S
    Genome Res; 2005 Apr; 15(4):566-76. PubMed ID: 15805497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SPACE: an algorithm to predict and quantify alternatively spliced isoforms using microarrays.
    Anton MA; Gorostiaga D; Guruceaga E; Segura V; Carmona-Saez P; Pascual-Montano A; Pio R; Montuenga LM; Rubio A
    Genome Biol; 2008; 9(2):R46. PubMed ID: 18312629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Splicing graphs and EST assembly problem.
    Heber S; Alekseyev M; Sze SH; Tang H; Pevzner PA
    Bioinformatics; 2002; 18 Suppl 1():S181-8. PubMed ID: 12169546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Networks of Highest-Connected Splice Isoforms: From The Chromosome 17 Human Proteome Project.
    Li HD; Menon R; Govindarajoo B; Panwar B; Zhang Y; Omenn GS; Guan Y
    J Proteome Res; 2015 Sep; 14(9):3484-91. PubMed ID: 26216192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A linear-time algorithm for finding a maximum-length ORF in a splice graph.
    Jaromczyk JW; Moore N; Schardl CL
    Int J Comput Biol Drug Des; 2012; 5(3-4):284-97. PubMed ID: 23013654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.