These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 16757820)

  • 1. Evaluating spatial constraints in cellular assembly processes using a monte carlo approach.
    Puskar K; Ta 'asan S; Schwartz R; LeDuc PR
    Cell Biochem Biophys; 2006; 45(2):195-201. PubMed ID: 16757820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of an actin filament network model under cyclic stretching through a coarse grained Monte Carlo approach.
    Kang J; Steward RL; Kim Y; Schwartz RS; LeDuc PR; Puskar KM
    J Theor Biol; 2011 Apr; 274(1):109-19. PubMed ID: 21241710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding actin organization in cell structure through lattice based Monte Carlo simulations.
    Puskar K; Apeltsin L; Ta'asan S; Schwartz R; LeDuc PR
    Mech Chem Biosyst; 2004 Jun; 1(2):123-31. PubMed ID: 16783938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coarse-grained modeling and simulation of actin filament behavior based on Brownian dynamics method.
    Shimada Y; Adachi T; Inoue Y; Hojo M
    Mol Cell Biomech; 2009 Sep; 6(3):161-73. PubMed ID: 19670826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability, Convergence, and Sensitivity Analysis of the FBLM and the Corresponding FEM.
    Sfakianakis N; Brunk A
    Bull Math Biol; 2018 Nov; 80(11):2789-2827. PubMed ID: 30159856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discontinuous unbinding transitions of filament bundles.
    Kierfeld J; Kühne T; Lipowsky R
    Phys Rev Lett; 2005 Jul; 95(3):038102. PubMed ID: 16090774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomechanics of actin filament: A molecular dynamics simulation.
    Shamloo A; Mehrafrooz B
    Cytoskeleton (Hoboken); 2018 Mar; 75(3):118-130. PubMed ID: 29272080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic off-lattice modeling of molecular self-assembly in crowded environments by Green's function reaction dynamics.
    Lee B; Leduc PR; Schwartz R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031911. PubMed ID: 18851069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative molecular dynamics and Monte Carlo study of statistical properties for coarse-grained heteropolymers.
    Schluttig J; Bachmann M; Janke W
    J Comput Chem; 2008 Nov; 29(15):2603-12. PubMed ID: 18478584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane Tension Acts Through PLD2 and mTORC2 to Limit Actin Network Assembly During Neutrophil Migration.
    Diz-Muñoz A; Thurley K; Chintamen S; Altschuler SJ; Wu LF; Fletcher DA; Weiner OD
    PLoS Biol; 2016 Jun; 14(6):e1002474. PubMed ID: 27280401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies.
    Bustad A; Terziivanov D; Leary R; Port R; Schumitzky A; Jelliffe R
    Clin Pharmacokinet; 2006; 45(4):365-83. PubMed ID: 16584284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulations of rigid biopolymer growth processes.
    Son J; Orkoulas G; Kolomeisky AB
    J Chem Phys; 2005 Sep; 123(12):124902. PubMed ID: 16392522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Versatile Framework for Simulating the Dynamic Mechanical Structure of Cytoskeletal Networks.
    Freedman SL; Banerjee S; Hocky GM; Dinner AR
    Biophys J; 2017 Jul; 113(2):448-460. PubMed ID: 28746855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale modeling of cell shape from the actin cytoskeleton.
    Rangamani P; Xiong GY; Iyengar R
    Prog Mol Biol Transl Sci; 2014; 123():143-67. PubMed ID: 24560144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A coarse-grained model and associated lattice Monte Carlo simulation of the coil-helix transition of a homopolypeptide.
    Chen Y; Zhang Q; Ding J
    J Chem Phys; 2004 Feb; 120(7):3467-74. PubMed ID: 15268504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into cytoskeletal behavior from computational modeling of dynamic microtubules in a cell-like environment.
    Gregoretti IV; Margolin G; Alber MS; Goodson HV
    J Cell Sci; 2006 Nov; 119(Pt 22):4781-8. PubMed ID: 17093268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of large-scale cell morphology and movement from local actin filament growth dynamics.
    Lacayo CI; Pincus Z; VanDuijn MM; Wilson CA; Fletcher DA; Gertler FB; Mogilner A; Theriot JA
    PLoS Biol; 2007 Sep; 5(9):e233. PubMed ID: 17760506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ML-Space: Hybrid Spatial Gillespie and Particle Simulation of Multi-Level Rule-Based Models in Cell Biology.
    Bittig AT; Uhrmacher AM
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(6):1339-1349. PubMed ID: 27514063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An extended Filament Based Lamellipodium Model produces various moving cell shapes in the presence of chemotactic signals.
    Manhart A; Oelz D; Schmeiser C; Sfakianakis N
    J Theor Biol; 2015 Oct; 382():244-58. PubMed ID: 26192155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomolecule-directed assembly of nanoscale building blocks studied via lattice Monte Carlo simulation.
    Chen T; Lamm MH; Glotzer SC
    J Chem Phys; 2004 Aug; 121(8):3919-29. PubMed ID: 15303961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.