These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 16758108)
1. Important macroscopic and microscopic differences in the bony and cartilaginous regions adjacent to the lumbar intervertebral disc between animal and man: a caveat to overinterpretation of animal experiments: comment to the article: Primary stability of anterior lumbar stabilization: interdependence of implant type and endplate retention or removal (C.H. Flamme et al.). Pfeiffer M; Pfeiffer D Eur Spine J; 2006 Jun; 15(6):819-20. PubMed ID: 16758108 [No Abstract] [Full Text] [Related]
2. Histological features of endplates of the mammalian spine: from mice to men. Zhang Y; Lenart BA; Lee JK; Chen D; Shi P; Ren J; Muehleman C; Chen D; An HS Spine (Phila Pa 1976); 2014 Mar; 39(5):E312-7. PubMed ID: 24365894 [TBL] [Abstract][Full Text] [Related]
3. Influences of disc degeneration and bone mineral density on the structural properties of lumbar end plates. Hou Y; Yuan W Spine J; 2012 Mar; 12(3):249-56. PubMed ID: 22366078 [TBL] [Abstract][Full Text] [Related]
4. Comparison of four methods to simulate swelling in poroelastic finite element models of intervertebral discs. Galbusera F; Schmidt H; Noailly J; Malandrino A; Lacroix D; Wilke HJ; Shirazi-Adl A J Mech Behav Biomed Mater; 2011 Oct; 4(7):1234-41. PubMed ID: 21783132 [TBL] [Abstract][Full Text] [Related]
5. A recent paper by Abouhossein et al. (2010) investigates the long-sharing mechanism of loads between the disc, ligaments and facet joints of the human lumbar spine. Aspden RM Comput Methods Biomech Biomed Engin; 2012; 15(9):1011-2; author reply 1013-4. PubMed ID: 21707247 [No Abstract] [Full Text] [Related]
6. Comparison of three posterior dynamic stabilization devices. Sangiorgio SN; Sheikh H; Borkowski SL; Khoo L; Warren CR; Ebramzadeh E Spine (Phila Pa 1976); 2011 Sep; 36(19):E1251-8. PubMed ID: 21358482 [TBL] [Abstract][Full Text] [Related]
7. Comparison of animals used in disc research to human lumbar disc geometry. O'Connell GD; Vresilovic EJ; Elliott DM Spine (Phila Pa 1976); 2007 Feb; 32(3):328-33. PubMed ID: 17268264 [TBL] [Abstract][Full Text] [Related]
8. Finite elements/Taguchi method based procedure for the identification of the geometrical parameters significantly affecting the biomechanical behavior of a lumbar disc. Cappetti N; Naddeo A; Naddeo F; Solitro GF Comput Methods Biomech Biomed Engin; 2016 Sep; 19(12):1278-85. PubMed ID: 26693883 [TBL] [Abstract][Full Text] [Related]
9. Systems identification for material properties of the intervertebral joint. Lin HS; Liu YK; Ray G; Nikravesh P J Biomech; 1978; 11(1-2):1-14. PubMed ID: 659451 [No Abstract] [Full Text] [Related]
10. Morphometric changes in the heights and anteroposterior diameters of the lumbar intervertebral discs with age. Amonoo-Kuofi HS J Anat; 1991 Apr; 175():159-68. PubMed ID: 2050561 [TBL] [Abstract][Full Text] [Related]
11. Structure and biology of the intervertebral disk in health and disease. Chan WC; Sze KL; Samartzis D; Leung VY; Chan D Orthop Clin North Am; 2011 Oct; 42(4):447-64, vii. PubMed ID: 21944583 [TBL] [Abstract][Full Text] [Related]
12. A multibody modelling approach to determine load sharing between passive elements of the lumbar spine. Abouhossein A; Weisse B; Ferguson SJ Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):527-37. PubMed ID: 21128134 [TBL] [Abstract][Full Text] [Related]
13. How maturity influences annulus-endplate integration in the ovine intervertebral disc: a micro- and ultra-structural study. Rodrigues SA; Thambyah A; Broom ND J Anat; 2017 Jan; 230(1):152-164. PubMed ID: 27535364 [TBL] [Abstract][Full Text] [Related]
14. Comparison of animal discs used in disc research to human lumbar disc: axial compression mechanics and glycosaminoglycan content. Beckstein JC; Sen S; Schaer TP; Vresilovic EJ; Elliott DM Spine (Phila Pa 1976); 2008 Mar; 33(6):E166-73. PubMed ID: 18344845 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical analysis of rotational motions after disc arthroplasty: implications for patients with adult deformities. McAfee PC; Cunningham BW; Hayes V; Sidiqi F; Dabbah M; Sefter JC; Hu N; Beatson H Spine (Phila Pa 1976); 2006 Sep; 31(19 Suppl):S152-60. PubMed ID: 16946633 [TBL] [Abstract][Full Text] [Related]
16. Significance of the mechanical environment during regeneration of the intervertebral disc. Zeiter S; Bishop N; Ito K Eur Spine J; 2005 Nov; 14(9):874-9. PubMed ID: 15988609 [TBL] [Abstract][Full Text] [Related]
17. Studies of the lumbar vertebral end-plate region in the pig. Törner M; Holm S Ups J Med Sci; 1985; 90(3):243-58. PubMed ID: 4095820 [TBL] [Abstract][Full Text] [Related]
18. The role of endplate poromechanical properties on the nutrient availability in the intervertebral disc. Malandrino A; Lacroix D; Hellmich C; Ito K; Ferguson SJ; Noailly J Osteoarthritis Cartilage; 2014 Jul; 22(7):1053-60. PubMed ID: 24857972 [TBL] [Abstract][Full Text] [Related]
19. Influence of growth modulation on the effective permeability of the vertebral end plate. A porcine experimental scoliosis model. Accadbled F; Laffosse JM; Odent T; Gomez-Brouchet A; Sales de Gauzy J; Swider P Clin Biomech (Bristol); 2011 May; 26(4):337-42. PubMed ID: 21146266 [TBL] [Abstract][Full Text] [Related]
20. Compressive properties of the cartilaginous end-plate of the baboon lumbar spine. Setton LA; Zhu W; Weidenbaum M; Ratcliffe A; Mow VC J Orthop Res; 1993 Mar; 11(2):228-39. PubMed ID: 8483035 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]