BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 1675854)

  • 1. Basic carboxyl groups of hemoglobin S: influence of oxy-deoxy conformation on the chemical reactivity of Glu-43(beta).
    Rao MJ; Acharya AS
    J Protein Chem; 1991 Feb; 10(1):129-38. PubMed ID: 1675854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of the gamma-carboxyl group of Glu-43(beta) to the alkaline Bohr effect of hemoglobin A.
    Rao MJ; Acharya AS
    Biochemistry; 1992 Aug; 31(32):7231-6. PubMed ID: 1354984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective amidation of carboxyl groups of the intermolecular contact regions of hemoglobin S: structural aspects.
    Acharya AS; Khandke L
    J Protein Chem; 1989 Apr; 8(2):231-7. PubMed ID: 2736042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactivity of Glu-22(beta) of hemoglobin S for amidation with glucosamine.
    Acharya AS; Seetharam R
    Biochemistry; 1985 Aug; 24(18):4885-90. PubMed ID: 2866791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymerization of hemoglobin S. Quinary interactions of Glu-43(beta).
    Rao MJ; Iyer KS; Acharya AS
    J Biol Chem; 1995 Aug; 270(33):19250-5. PubMed ID: 7642597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific modification of the carboxyl groups of hemoglobin S.
    Seetharam R; Manning JM; Acharya AS
    J Biol Chem; 1983 Dec; 258(24):14810-5. PubMed ID: 6654893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of amino acid at the beta 6 position on surface hydrophobicity, stability, solubility, and the kinetics of polymerization of hemoglobin. Comparisons among Hb A (Glu beta 6), Hb C (Lys beta 6), Hb Machida (Gln beta 6), and Hb S (Val beta 6).
    Adachi K; Kim J; Travitz R; Harano T; Asakura T
    J Biol Chem; 1987 Sep; 262(27):12920-5. PubMed ID: 2888754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selectivity in the modification of the alpha-amino groups of hemoglobin on reductive alkylation with aliphatic carbonyl compounds. Influence of derivatization on the polymerization of hemoglobin S.
    Acharya AS; Sussman LG; Manning JM
    J Biol Chem; 1985 May; 260(10):6039-46. PubMed ID: 3997812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. beta-Galactosidases of Escherichia coli with substitutions for Glu-461 can be activated by nucleophiles and can form beta-D-galactosyl adducts.
    Huber RE; Chivers PT
    Carbohydr Res; 1993 Dec; 250(1):9-18. PubMed ID: 7908253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perturbation of the intermolecular contact regions (molecular surface) of hemoglobin S by intramolecular low-O2-affinity-inducing central cavity cross-bridges.
    Malavalli A; Manjula BN; Friedman JM; Acharya AS
    J Protein Chem; 2000 May; 19(4):255-67. PubMed ID: 11043930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitation of Hb S polymerization by the substitution of Glu for Gln at beta 121.
    Adachi K; Kim J; Ballas S; Surrey S; Asakura T
    J Biol Chem; 1988 Apr; 263(12):5607-10. PubMed ID: 2895770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of isotope exchange based mass spectrometry to understand the mechanism of inhibition of sickle hemoglobin polymerization upon oxygenation.
    Das R; Mitra A; Bhat V; Mandal AK
    J Struct Biol; 2017 Jul; 199(1):76-83. PubMed ID: 28465180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steric and hydrophobic determinants of the solubilities of recombinant sickle cell hemoglobins.
    Bihoreau MT; Baudin V; Marden M; Lacaze N; Bohn B; Kister J; Schaad O; Dumoulin A; Edelstein SJ; Poyart C
    Protein Sci; 1992 Jan; 1(1):145-50. PubMed ID: 1363932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of axial fiber contact residues impact sickle hemoglobin polymerization by perturbing a network of coupled interactions.
    Banerjee S; Mirsamadi N; Anantharaman L; Sivaram MV; Gupta RB; Choudhury D; Roy RP
    Protein J; 2007 Oct; 26(7):445-55. PubMed ID: 17514412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of deoxy-human hemoglobin beta6 Glu --> Trp. Implications for the structure and formation of the sickle cell fiber.
    Harrington DJ; Adachi K; Royer WE
    J Biol Chem; 1998 Dec; 273(49):32690-6. PubMed ID: 9830011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential labeling of the catalytic subunit of cAMP-dependent protein kinase with a water-soluble carbodiimide: identification of carboxyl groups protected by MgATP and inhibitor peptides.
    Buechler JA; Taylor SS
    Biochemistry; 1990 Feb; 29(7):1937-43. PubMed ID: 2331473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of semisynthetic modification of the scaffold of a contact domain of HbS on polymerization: role of flexible surface topology in polymerization inhibition.
    Sonati S; Bhutoria S; Prabhakaran M; Acharya SA
    J Biomol Struct Dyn; 2018 Feb; 36(3):689-700. PubMed ID: 28278759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contact inhibition within hemoglobin S polymer by thiol reagents.
    Caburi-Martin J; Garel MC; Domenget C; Prehu C; Beuzard Y
    Biochim Biophys Acta; 1986 Nov; 874(1):82-9. PubMed ID: 3768379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interspecies hybrid HbS: complete neutralization of Val6(beta)-dependent polymerization of human beta-chain by pig alpha-chains.
    Rao MJ; Malavalli A; Manjula BN; Kumar R; Prabhakaran M; Sun DP; Ho NT; Ho C; Nagel RL; Acharya AS
    J Mol Biol; 2000 Jul; 300(5):1389-406. PubMed ID: 10903876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between beta4 hydrogen bond and beta6 hydrophobic interactions during aggregate, fiber or crystal formation in oversaturated solutions of hemoglobin A and S.
    Adachi K; Ding M; Asakura T; Surrey S
    Arch Biochem Biophys; 2009 Jan; 481(2):137-44. PubMed ID: 19022217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.