BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 16758710)

  • 1. Discriminating toxicant classes by mode of action. 1. (Eco)toxicity profiles.
    Nendza M; Wenzel A
    Environ Sci Pollut Res Int; 2006 May; 13(3):192-203. PubMed ID: 16758710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discriminating toxicant classes by mode of action: 4. Baseline and excess toxicity.
    Nendza M; Müller M; Wenzel A
    SAR QSAR Environ Res; 2014; 25(5):393-405. PubMed ID: 24773472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro assessment of modes of toxic action of pharmaceuticals in aquatic life.
    Escher BI; Bramaz N; Eggen RI; Richter M
    Environ Sci Technol; 2005 May; 39(9):3090-100. PubMed ID: 15926557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of contaminants by mode of action based on in vitro assays.
    Nendza M; Wenzel A; Wienen G
    SAR QSAR Environ Res; 1995; 4(1):39-50. PubMed ID: 8765902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecotoxicological characterisation and classification of existing chemicals. Examples from the ICCA HPV initiative and comparison with other existing chemicals.
    Licht O; Weyers A; Nagel R
    Environ Sci Pollut Res Int; 2004; 11(5):291-6. PubMed ID: 15506630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Target site model: Predicting mode of action and aquatic organism acute toxicity using Abraham parameters and feature-weighted k-nearest neighbors classification.
    Boone KS; Di Toro DM
    Environ Toxicol Chem; 2019 Feb; 38(2):375-386. PubMed ID: 30506854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Bayesian network model for predicting aquatic toxicity mode of action using two dimensional theoretical molecular descriptors.
    Carriger JF; Martin TM; Barron MG
    Aquat Toxicol; 2016 Nov; 180():11-24. PubMed ID: 27640153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One uncertainty factor does not fit all: Identifying mode of action and species specific acute to chronic ratios for aquatic life.
    Wang Z; Berninger JP; You J; Brooks BW
    Environ Pollut; 2020 Jul; 262():114262. PubMed ID: 32120260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships Between Aquatic Toxicity, Chemical Hydrophobicity, and Mode of Action: Log Kow Revisited.
    Lambert FN; Vivian DN; Raimondo S; Tebes-Stevens CT; Barron MG
    Arch Environ Contam Toxicol; 2022 Nov; 83(4):326-338. PubMed ID: 35864329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action.
    Sanderson H; Thomsen M
    Toxicol Lett; 2009 Jun; 187(2):84-93. PubMed ID: 19429249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental properties and aquatic hazard assessment of anionic surfactants: physico-chemical, environmental fate and ecotoxicity properties.
    Könnecker G; Regelmann J; Belanger S; Gamon K; Sedlak R
    Ecotoxicol Environ Saf; 2011 Sep; 74(6):1445-60. PubMed ID: 21550112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial gene profiling assay applied as an alternative method for mode of action classification: pilot study using chlorinated anilines.
    Dom N; Nobels I; Knapen D; Blust R
    Environ Toxicol Chem; 2011 May; 30(5):1059-68. PubMed ID: 21309029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a general baseline toxicity QSAR model for the fish embryo acute toxicity test.
    Klüver N; Vogs C; Altenburger R; Escher BI; Scholz S
    Chemosphere; 2016 Dec; 164():164-173. PubMed ID: 27588575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity of organic compounds from unresolved complex mixtures (UCMs) to primary fish hepatocytes.
    Petersen K; Hultman MT; Rowland SJ; Tollefsen KE
    Aquat Toxicol; 2017 Sep; 190():150-161. PubMed ID: 28711771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of baseline toxicants for QSAR predictions to replace fish acute toxicity studies.
    Nendza M; Müller M; Wenzel A
    Environ Sci Process Impacts; 2017 Mar; 19(3):429-437. PubMed ID: 28165522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MOAtox: A comprehensive mode of action and acute aquatic toxicity database for predictive model development.
    Barron MG; Lilavois CR; Martin TM
    Aquat Toxicol; 2015 Apr; 161():102-7. PubMed ID: 25700118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying the mechanism of aquatic toxicity of selected compounds by hydrophobicity and electrophilicity descriptors.
    Ren S; Schultz TW
    Toxicol Lett; 2002 Mar; 129(1-2):151-60. PubMed ID: 11879986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QSAR and chemometric approaches for setting water quality objectives for dangerous chemicals.
    Vighi M; Gramatica P; Consolaro F; Todeschini R
    Ecotoxicol Environ Saf; 2001 Jul; 49(3):206-20. PubMed ID: 11440473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General baseline toxicity QSAR for nonpolar, polar and ionisable chemicals and their mixtures in the bioluminescence inhibition assay with Aliivibrio fischeri.
    Escher BI; Baumer A; Bittermann K; Henneberger L; König M; Kühnert C; Klüver N
    Environ Sci Process Impacts; 2017 Mar; 19(3):414-428. PubMed ID: 28197603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using membrane-water partition coefficients in a critical membrane burden approach to aid the identification of neutral and ionizable chemicals that induce acute toxicity below narcosis levels.
    Droge STJ; Hodges G; Bonnell M; Gutsell S; Roberts J; Teixeira A; Barrett EL
    Environ Sci Process Impacts; 2023 Mar; 25(3):621-647. PubMed ID: 36779707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.