BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16759350)

  • 1. Pyrite-induced hydroxyl radical formation and its effect on nucleic acids.
    Cohn CA; Mueller S; Wimmer E; Leifer N; Greenbaum S; Strongin DR; Schoonen MA
    Geochem Trans; 2006 Apr; 7():3. PubMed ID: 16759350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenine oxidation by pyrite-generated hydroxyl radicals.
    Cohn CA; Fisher SC; Brownawell BJ; Schoonen MA
    Geochem Trans; 2010 Apr; 11(1):2. PubMed ID: 20420694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of pyrite in formation of hydroxyl radicals in coal: possible implications for human health.
    Cohn CA; Laffers R; Simon SR; O'Riordan T; Schoonen MA
    Part Fibre Toxicol; 2006 Dec; 3():16. PubMed ID: 17177987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox Behavior of Secondary Solid Iron Species and the Corresponding Effects on Hydroxyl Radical Generation during the Pyrite Oxidation Process.
    Zhao Z; Peng S; Ma C; Yu C; Wu D
    Environ Sci Technol; 2022 Sep; 56(17):12635-12644. PubMed ID: 35976700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrite-driven reactive oxygen species formation in simulated lung fluid: implications for coal workers' pneumoconiosis.
    Harrington AD; Hylton S; Schoonen MA
    Environ Geochem Health; 2012 Aug; 34(4):527-38. PubMed ID: 21989857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Considerations on the mechanism of action of artemisinin antimalarials: part 1--the 'carbon radical' and 'heme' hypotheses.
    Haynes RK; Cheu KW; N'Da D; Coghi P; Monti D
    Infect Disord Drug Targets; 2013 Aug; 13(4):217-77. PubMed ID: 24304352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced degradation of chloramphenicol at alkaline conditions by S(-II) assisted heterogeneous Fenton-like reactions using pyrite.
    Zhao L; Chen Y; Liu Y; Luo C; Wu D
    Chemosphere; 2017 Dec; 188():557-566. PubMed ID: 28915374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient transformation of diethyl phthalate using calcium peroxide activated by pyrite.
    Zhou Y; Huang M; Wang X; Gao J; Fang G; Zhou D
    Chemosphere; 2020 Aug; 253():126662. PubMed ID: 32268253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement by catechols of hydroxyl-radical formation in the presence of ferric ions and hydrogen peroxide.
    Iwahashi H; Morishita H; Ishii T; Sugata R; Kido R
    J Biochem; 1989 Mar; 105(3):429-34. PubMed ID: 2543661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction of vanadyl with hydrogen peroxide. An ESR and spin trapping study.
    Carmichael AJ
    Free Radic Res Commun; 1990; 10(1-2):37-45. PubMed ID: 2165984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of melanin on iron associated decomposition of hydrogen peroxide.
    Pilas B; Sarna T; Kalyanaraman B; Swartz HM
    Free Radic Biol Med; 1988; 4(5):285-93. PubMed ID: 2834276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ESR spin trapping studies into the nature of the oxidizing species formed in the Fenton reaction: pitfalls associated with the use of 5,5-dimethyl-1-pyrroline-N-oxide in the detection of the hydroxyl radical.
    Burkitt MJ
    Free Radic Res Commun; 1993; 18(1):43-57. PubMed ID: 8394273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron Supplements and Magnesium Peroxide: An Example of a Hazardous Combination in Self-Medication.
    Vrolijk MF; Opperhuizen A; Jansen EH; Bast A; Haenen GR
    Basic Clin Pharmacol Toxicol; 2016 Oct; 119(4):412-7. PubMed ID: 27061346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying hydrogen peroxide in iron-containing solutions using leuco crystal violet.
    Cohn CA; Pak A; Strongin D; Schoonen MA
    Geochem Trans; 2005; 6(3):47. PubMed ID: 35412761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyl radical production by abiotic oxidation of pyrite under estuarine conditions: The effects of aging, seawater anions and illumination.
    Liu R; Dai Y; Feng Y; Sun S; Zhang X; An C; Zhao S
    J Environ Sci (China); 2024 Jan; 135():715-727. PubMed ID: 37778841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced-oxidation of sulfanilamide in groundwater using combination of calcium peroxide and pyrite.
    Kim JG; Kim HB; Jeong WG; Baek K
    J Hazard Mater; 2021 Oct; 419():126514. PubMed ID: 34323727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The origin of the hydroxyl radical oxygen in the Fenton reaction.
    Lloyd RV; Hanna PM; Mason RP
    Free Radic Biol Med; 1997; 22(5):885-8. PubMed ID: 9119257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals.
    Li L; Abe Y; Kanagawa K; Shoji T; Mashino T; Mochizuki M; Tanaka M; Miyata N
    Anal Chim Acta; 2007 Sep; 599(2):315-9. PubMed ID: 17870296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactions of copper(II)-N-polycarboxylate complexes with hydrogen peroxide in the presence of biological reductants: ESR evidence for the formation of hydroxyl radical.
    Ozawa T; Hanaki A; Onodera K; Kasai M
    Biochem Int; 1992 Mar; 26(3):477-83. PubMed ID: 1320883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrite-induced hydrogen peroxide formation as a driving force in the evolution of photosynthetic organisms on an early earth.
    Borda MJ; Elsetinow AR; Schoonen MA; Strongin DR
    Astrobiology; 2001; 1(3):283-8. PubMed ID: 12448991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.