These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 16759397)

  • 41. Small acid-soluble spore proteins of Clostridium acetobutylicum are able to protect DNA in vitro and are specifically cleaved by germination protease GPR and spore protease YyaC.
    Wetzel D; Fischer RJ
    Microbiology (Reading); 2015 Nov; 161(11):2098-109. PubMed ID: 26362088
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interactions between Clostridium perfringens spores and Raw 264.7 macrophages.
    Paredes-Sabja D; Sarker MR
    Anaerobe; 2012 Feb; 18(1):148-56. PubMed ID: 22209938
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genome-Wide Transcriptional Profiling of Clostridium perfringens SM101 during Sporulation Extends the Core of Putative Sporulation Genes and Genes Determining Spore Properties and Germination Characteristics.
    Xiao Y; van Hijum SA; Abee T; Wells-Bennik MH
    PLoS One; 2015; 10(5):e0127036. PubMed ID: 25978838
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chitosan inhibits enterotoxigenic Clostridium perfringens type A in growth medium and chicken meat.
    Alnoman M; Udompijitkul P; Sarker MR
    Food Microbiol; 2017 Jun; 64():15-22. PubMed ID: 28213020
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Disruption of the gene (spo0A) encoding sporulation transcription factor blocks endospore formation and enterotoxin production in enterotoxigenic Clostridium perfringens type A.
    Huang IH; Waters M; Grau RR; Sarker MR
    FEMS Microbiol Lett; 2004 Apr; 233(2):233-40. PubMed ID: 15063491
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differential outgrowth potential of Clostridium perfringens food-borne isolates with various cpe-genotypes in vacuum-packed ground beef during storage at 12°C.
    Xiao Y; Wagendorp A; Abee T; Wells-Bennik MH
    Int J Food Microbiol; 2015 Feb; 194():40-5. PubMed ID: 25461607
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Location and stoichiometry of the protease CspB and the cortex-lytic enzyme SleC in Clostridium perfringens spores.
    Banawas S; Korza G; Paredes-Sabja D; Li Y; Hao B; Setlow P; Sarker MR
    Food Microbiol; 2015 Sep; 50():83-7. PubMed ID: 25998819
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Increased numbers of heat-resistnat spores produced by two strains of Clostridium perfringens bearing temperate phage s9.
    Stewart AW; Johnson MG
    J Gen Microbiol; 1977 Nov; 103(1):45-50. PubMed ID: 201726
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Combined effects of hydrostatic pressure, temperature, and pH on the inactivation of spores of Clostridium perfringens type A and Clostridium sporogenes in buffer solutions.
    Paredes-Sabja D; Gonzalez M; Sarker MR; Torres JA
    J Food Sci; 2007 Aug; 72(6):M202-6. PubMed ID: 17995687
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Clostridium perfringens sporulation and its relevance to pathogenesis.
    Paredes-Sabja D; Sarker MR
    Future Microbiol; 2009 Jun; 4(5):519-25. PubMed ID: 19492963
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of the cortex-lytic enzyme SleC from non-food-borne Clostridium perfringens on the germination properties of SleC-lacking spores of a food poisoning isolate.
    Paredes-Sabja D; Sarker MR
    Can J Microbiol; 2010 Nov; 56(11):952-8. PubMed ID: 21076486
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A proposed sero-grouping scheme for epidemiological investigation of food poisoning due to Clostridium perfringens type A.
    Chakrabarty AK; Narayan KG
    Zentralbl Bakteriol Orig A; 1979 Oct; 245(1-2):114-22. PubMed ID: 44603
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Use of power ultrasound to enhance the thermal inactivation of Clostridium perfringens spores in beef slurry.
    Evelyn ; Silva FV
    Int J Food Microbiol; 2015 Aug; 206():17-23. PubMed ID: 25912313
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of small acid-soluble proteins (SASPs) in protection of spores of Clostridium botulinum against nitrous acid.
    Meaney CA; Cartman ST; McClure PJ; Minton NP
    Int J Food Microbiol; 2016 Jan; 216():25-30. PubMed ID: 26386202
    [TBL] [Abstract][Full Text] [Related]  

  • 55. What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens?
    Andersson A; Ronner U; Granum PE
    Int J Food Microbiol; 1995 Dec; 28(2):145-55. PubMed ID: 8750663
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of wet heat treatment on the germination of individual spores of Clostridium perfringens.
    Wang G; Paredes-Sabja D; Sarker MR; Green C; Setlow P; Li YQ
    J Appl Microbiol; 2012 Oct; 113(4):824-36. PubMed ID: 22776375
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inhibitory effects of polyphosphates on Clostridium perfringens growth, sporulation and spore outgrowth.
    Akhtar S; Paredes-Sabja D; Sarker MR
    Food Microbiol; 2008 Sep; 25(6):802-8. PubMed ID: 18620972
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Heat resistance, spore germination, and enterotoxigenicity of Clostridium perfringens.
    Ando Y; Tsuzuki T; Sunagawa H; Oka S
    Microbiol Immunol; 1985; 29(4):317-26. PubMed ID: 2862570
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pathogenesis of Hobbs' heat-sensitive spore forming Clostridium perfringens type A strain.
    Chakrabarty AK; Narayan KG
    Microbiol Immunol; 1979; 23(4):213-21. PubMed ID: 224284
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cloning and nucleotide sequence of three genes coding for small, acid-soluble proteins of Clostridium perfringens spores.
    Cabrera-Martinez RM; Setlow P
    FEMS Microbiol Lett; 1991 Jan; 61(2-3):127-31. PubMed ID: 2037223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.