BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 16759893)

  • 1. Significance of the extra C-terminal tail of CaLP, a novel calmodulin-like protein involved in oyster calcium metabolism.
    Li S; Xie L; Meng Q; Zhang R
    Comp Biochem Physiol B Biochem Mol Biol; 2006 Aug; 144(4):463-71. PubMed ID: 16759893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cDNA cloning and characterization of a novel calmodulin-like protein from pearl oyster Pinctada fucata.
    Li S; Xie L; Ma Z; Zhang R
    FEBS J; 2005 Oct; 272(19):4899-910. PubMed ID: 16176264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significance of the C-terminal globular domain and the extra tail of the calmodulin-like protein (Pinctada fucata) in subcellular localization and protein-protein interaction.
    Fang Z; Cao W; Li S; Wang Q; Li C; Xie L; Zhang R
    Cell Biol Int; 2008 Aug; 32(8):920-7. PubMed ID: 18479946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The extra C-terminal tail is involved in the conformation, stability changes and the N/C-domain interactions of the calmodulin-like protein from pearl oyster Pinctada fucata.
    Wang Q; Li S; Li C; Liang J; Fang Z; Xie L; Zhang R
    Biochim Biophys Acta; 2008 Nov; 1784(11):1514-23. PubMed ID: 18675945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and expression of a pivotal calcium metabolism regulator: calmodulin involved in shell formation from pearl oyster (Pinctada fucata).
    Li S; Xie L; Zhang C; Zhang Y; Gu M; Zhang R
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Jul; 138(3):235-43. PubMed ID: 15253872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic characterization of a high-affinity calmodulin-target peptide hybrid molecule.
    Martin SR; Bayley PM; Brown SE; Porumb T; Zhang M; Ikura M
    Biochemistry; 1996 Mar; 35(11):3508-17. PubMed ID: 8639501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural uncoupling between opposing domains of oxidized calmodulin underlies the enhanced binding affinity and inhibition of the plasma membrane Ca-ATPase.
    Chen B; Mayer MU; Squier TC
    Biochemistry; 2005 Mar; 44(12):4737-47. PubMed ID: 15779900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic characterization of the interaction between calmodulin-dependent protein kinase I and calmodulin.
    Gomes AV; Barnes JA; Vogel HJ
    Arch Biochem Biophys; 2000 Jul; 379(1):28-36. PubMed ID: 10864438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical characterization of calmodulin and calmodulin-like proteins from rice, Oryza sativa L.
    Chinpongpanich A; Wutipraditkul N; Thairat S; Buaboocha T
    Acta Biochim Biophys Sin (Shanghai); 2011 Nov; 43(11):867-76. PubMed ID: 21908855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interdomain cooperativity of calmodulin bound to melittin preferentially increases calcium affinity of sites I and II.
    Newman RA; Van Scyoc WS; Sorensen BR; Jaren OR; Shea MA
    Proteins; 2008 Jun; 71(4):1792-812. PubMed ID: 18175310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Na+/H+ exchanger cytoplasmic tail: structure, function, and interactions with tescalcin.
    Li X; Liu Y; Kay CM; Müller-Esterl W; Fliegel L
    Biochemistry; 2003 Jun; 42(24):7448-56. PubMed ID: 12809501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium binding to calmodulin mutants having domain-specific effects on the regulation of ion channels.
    VanScyoc WS; Newman RA; Sorensen BR; Shea MA
    Biochemistry; 2006 Dec; 45(48):14311-24. PubMed ID: 17128970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing Ca2+-induced conformational changes in porcine calmodulin by H/D exchange and ESI-MS: effect of cations and ionic strength.
    Zhu MM; Rempel DL; Zhao J; Giblin DE; Gross ML
    Biochemistry; 2003 Dec; 42(51):15388-97. PubMed ID: 14690449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium and lanthanide affinity of the EF-loops from the C-terminal domain of calmodulin.
    Ye Y; Lee HW; Yang W; Yang JJ
    J Inorg Biochem; 2005 Jun; 99(6):1376-83. PubMed ID: 15917089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calmodulin isoform-specific activation of a rice calmodulin-binding kinase conferred by only three amino-acids of OsCaM61.
    Li DF; Li J; Ma L; Zhang L; Lu YT
    FEBS Lett; 2006 Aug; 580(18):4325-31. PubMed ID: 16842786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of interdomain interactions via partial calcium occupancy of calmodulin.
    Boschek CB; Squier TC; Bigelow DJ
    Biochemistry; 2007 Apr; 46(15):4580-8. PubMed ID: 17378588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes upon calcium binding and phosphorylation in a synthetic fragment of calmodulin.
    Settimo L; Donnini S; Juffer AH; Woody RW; Marin O
    Biopolymers; 2007; 88(3):373-85. PubMed ID: 17173306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium binding to calmodulin mutants monitored by domain-specific intrinsic phenylalanine and tyrosine fluorescence.
    VanScyoc WS; Sorensen BR; Rusinova E; Laws WR; Ross JB; Shea MA
    Biophys J; 2002 Nov; 83(5):2767-80. PubMed ID: 12414709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies of the calmodulin-binding site of twitchin with synthetic peptides using fluorescence and CD spectroscopy.
    Buku A; Probst WC; Weiss KR; Heierhorst J
    Biochem Biophys Res Commun; 1996 Jan; 218(3):854-9. PubMed ID: 8579604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational design of calmodulin mutants with up to 900-fold increase in binding specificity.
    Yosef E; Politi R; Choi MH; Shifman JM
    J Mol Biol; 2009 Feb; 385(5):1470-80. PubMed ID: 18845160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.