These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 16759942)

  • 21. Development by three-dimensional approaches and four-dimensional imaging: to the knowledge frontier and beyond.
    Carneiro K; de Brito JM; Rossi MI
    Birth Defects Res C Embryo Today; 2015 Mar; 105(1):1-8. PubMed ID: 25789860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Organs by design: can bioprinting meet self-organization?
    Martin I; Malda J; Rivron NC
    Curr Opin Organ Transplant; 2019 Oct; 24(5):562-567. PubMed ID: 31348016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. siRNA as a tool for investigating organogenesis: The pitfalls and the promises.
    Lee WC; Berry R; Hohenstein P; Davies J
    Organogenesis; 2008 Jul; 4(3):176-81. PubMed ID: 19279730
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-step Approach to Explore Early- and Late-stages of Organ Formation in the Avian Model: The Thymus and Parathyroid Glands Organogenesis Paradigm.
    Figueiredo M; Neves H
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 29985315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioreactor design considerations for hollow organs.
    Fish J; Halberstadt C; McCoy DW; Robbins N
    Methods Mol Biol; 2013; 1001():207-14. PubMed ID: 23494432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids.
    Renner H; Grabos M; Becker KJ; Kagermeier TE; Wu J; Otto M; Peischard S; Zeuschner D; TsyTsyura Y; Disse P; Klingauf J; Leidel SA; Seebohm G; Schöler HR; Bruder JM
    Elife; 2020 Nov; 9():. PubMed ID: 33138918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Statistical analyses in trials for the comprehensive understanding of organogenesis and histogenesis in humans and mice.
    Otani H; Udagawa J; Naito K
    J Biochem; 2016 Jun; 159(6):553-61. PubMed ID: 26935132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dissection and Culture of Mouse Embryonic Kidney.
    Aresh B; Peuckert C
    J Vis Exp; 2017 May; (123):. PubMed ID: 28570550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Procedures for the quantification of whole-tissue immunofluorescence images obtained at single-cell resolution during murine tubular organ development.
    Hirashima T; Adachi T
    PLoS One; 2015; 10(8):e0135343. PubMed ID: 26258587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative organ differentiation during early life stages of marine fish.
    Falk-Petersen IB
    Fish Shellfish Immunol; 2005 Nov; 19(5):397-412. PubMed ID: 15890533
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Growing human organs in pigs-A dream or reality?
    Nagashima H; Matsunari H
    Theriogenology; 2016 Jul; 86(1):422-6. PubMed ID: 27156683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tubular collagen scaffolds with radial elasticity for hollow organ regeneration.
    Versteegden LR; van Kampen KA; Janke HP; Tiemessen DM; Hoogenkamp HR; Hafmans TG; Roozen EA; Lomme RM; van Goor H; Oosterwijk E; Feitz WF; van Kuppevelt TH; Daamen WF
    Acta Biomater; 2017 Apr; 52():1-8. PubMed ID: 28179160
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developmental potential for morphogenesis in vivo and in vitro.
    Kaneko K; Sato K; Michiue T; Okabayashi K; Ohnuma K; Danno H; Asashima M
    J Exp Zool B Mol Dev Evol; 2008 Sep; 310(6):492-503. PubMed ID: 18553388
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reconstitution of a bioengineered salivary gland using a three-dimensional cell manipulation method.
    Ogawa M; Tsuji T
    Curr Protoc Cell Biol; 2015 Mar; 66():19.17.1-19.17.13. PubMed ID: 25727330
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Xenopus: leaping forward in kidney organogenesis.
    Krneta-Stankic V; DeLay BD; Miller RK
    Pediatr Nephrol; 2017 Apr; 32(4):547-555. PubMed ID: 27099217
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical coherence tomography: a new high-resolution imaging technology to study cardiac development in chick embryos.
    Yelbuz TM; Choma MA; Thrane L; Kirby ML; Izatt JA
    Circulation; 2002 Nov; 106(22):2771-4. PubMed ID: 12451001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. no privacy, a Xenopus tropicalis mutant, is a model of human Hermansky-Pudlak Syndrome and allows visualization of internal organogenesis during tadpole development.
    Nakayama T; Nakajima K; Cox A; Fisher M; Howell M; Fish MB; Yaoita Y; Grainger RM
    Dev Biol; 2017 Jun; 426(2):472-486. PubMed ID: 27595926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation of Scaffold-free, Three-dimensional Insulin Expressing Pancreatoids from Mouse Pancreatic Progenitors In Vitro.
    Scavuzzo MA; Teaw J; Yang D; Borowiak M
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 29912186
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [From cell therapy to organ regeneration therapy: generation of functional organs from pluripotent stem cells].
    Kobayashi T; Nakauchi H
    Nihon Rinsho; 2011 Dec; 69(12):2148-55. PubMed ID: 22242312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Following Endocardial Tissue Movements via Cell Photoconversion in the Zebrafish Embryo.
    Chow RW; Lamperti P; Steed E; Boselli F; Vermot J
    J Vis Exp; 2018 Feb; (132):. PubMed ID: 29553538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.