These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 16760092)

  • 1. Fundamental features of copper ion precipitation using sulfide as a precipitant in a wastewater system.
    Choi JY; Kim DS; Lim JY
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(6):1155-72. PubMed ID: 16760092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple method for removing chelated copper from wastewaters: Ca(OH)(2)-based replacement-precipitation.
    Jiang S; Fu F; Qu J; Xiong Y
    Chemosphere; 2008 Oct; 73(5):785-90. PubMed ID: 18653210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfide removal in petroleum refinery wastewater by chemical precipitation.
    Altaş L; Büyükgüngör H
    J Hazard Mater; 2008 May; 153(1-2):462-9. PubMed ID: 17913353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separate recovery of copper and zinc from acid mine drainage using biogenic sulfide.
    Sahinkaya E; Gungor M; Bayrakdar A; Yucesoy Z; Uyanik S
    J Hazard Mater; 2009 Nov; 171(1-3):901-6. PubMed ID: 19608339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dissolution characteristics of calcium sulfide and utilization as a precipitation agent in acidic wastewater effluent treatment.
    Zvimba JN; Mulopo J; De Beer M; Bologo L; Mashego M
    Water Sci Technol; 2011; 63(12):2860-6. PubMed ID: 22049711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-removal of hexavalent chromium during copper precipitation.
    Sun J; Huang JC
    Water Sci Technol; 2002; 46(4-5):413-9. PubMed ID: 12361041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient removal of Cu(II), Zn(II), Ni(II) and Fe(II) from electroplating wastewater using sulphide from sulphidogenic bioreactor effluent.
    Fang D; Zhang R; Deng W; Li J
    Environ Technol; 2012; 33(13-15):1709-15. PubMed ID: 22988632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-removal of hexavalent chromium through adsorption during copper precipitation.
    Sun JM; Huang JC
    Water Sci Technol; 2004; 50(8):201-8. PubMed ID: 15566204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lead removal and toxicity reduction from industrial wastewater through biological sulfate reduction process.
    Teekayuttasakul P; Annachhatre AP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Oct; 43(12):1424-30. PubMed ID: 18780220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of pH and iron concentrations on sulfide precipitation in wastewater collection systems.
    Nielsen AH; Hvitved-Jacobsen T; Vollertsen J
    Water Environ Res; 2008 Apr; 80(4):380-4. PubMed ID: 18536490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfide-iron interactions in domestic wastewater from a gravity sewer.
    Haaning Nielsen A; Lens P; Vollertsen J; Hvitved-Jacobsen T
    Water Res; 2005 Jul; 39(12):2747-55. PubMed ID: 15978649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and analysis of continuous-flow reactors for copper sulfide precipitation process by a computational method.
    Yang Z; Li B; Zeng W; Li K; Liu S; Hu H; Guo W
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34531-34551. PubMed ID: 31642020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel up-flow inner-cycle anoxic bioreactor (UIAB) system for the treatment of sulfide wastewater from purification of biogas.
    Song Z; Li Q; Wang D; Zhang J; Xing J
    Water Sci Technol; 2012; 65(6):1033-40. PubMed ID: 22377999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical sulfide oxidation of wastewater--effects of pH and temperature.
    Nielsen AH; Vollertsen J; Hvitved-Jacobsen T
    Water Sci Technol; 2004; 50(4):185-92. PubMed ID: 15484760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of copper ions from aqueous solutions by kaolinite and batch design.
    Alkan M; Kalay B; Doğan M; Demirbaş O
    J Hazard Mater; 2008 May; 153(1-2):867-76. PubMed ID: 17976907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper removal from wastewater using spent-grain as biosorbent.
    Lu S; Gibb SW
    Bioresour Technol; 2008 Apr; 99(6):1509-17. PubMed ID: 17555956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of tungsten oxyanions from industrial wastewater by precipitation, coagulation and flocculation processes.
    Plattes M; Bertrand A; Schmitt B; Sinner J; Verstraeten F; Welfring J
    J Hazard Mater; 2007 Sep; 148(3):613-5. PubMed ID: 17420093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melamine-formaldehyde-NTA chelating gel resin: Synthesis, characterization and application for copper(II) ion removal from synthetic wastewater.
    Baraka A; Hall PJ; Heslop MJ
    J Hazard Mater; 2007 Feb; 140(1-2):86-94. PubMed ID: 16887265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal sulphides from wastewater: assessing the impact of supersaturation control strategies.
    Mokone TP; van Hille RP; Lewis AE
    Water Res; 2012 May; 46(7):2088-100. PubMed ID: 22336629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.
    Sun J; Pikaar I; Sharma KR; Keller J; Yuan Z
    Water Res; 2015 Mar; 71():150-9. PubMed ID: 25616115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.