These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 16760335)

  • 1. Explaining pH change in exercising muscle: lactic acid, proton consumption, and buffering vs. strong ion difference.
    Kemp G; Böning D; Beneke R; Maassen N
    Am J Physiol Regul Integr Comp Physiol; 2006 Jul; 291(1):R235-7; author reply R238-9. PubMed ID: 16760335
    [No Abstract]   [Full Text] [Related]  

  • 2. Lactate accumulation, proton buffering, and pH change in ischemically exercising muscle.
    Kemp G
    Am J Physiol Regul Integr Comp Physiol; 2005 Sep; 289(3):R895-901; author reply R904-910. PubMed ID: 16105824
    [No Abstract]   [Full Text] [Related]  

  • 3. Dissociation between lactate and proton exchange in muscle during intense exercise in man.
    Bangsbo J; Juel C; Hellsten Y; Saltin B
    J Physiol; 1997 Oct; 504 ( Pt 2)(Pt 2):489-99. PubMed ID: 9365920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Last word on point:counterpoint: lactic acid is/is not the only physicochemical contributor to the acidosis of exercise.
    Böning D; Maassen N
    J Appl Physiol (1985); 2008 Jul; 105(1):368. PubMed ID: 18641216
    [No Abstract]   [Full Text] [Related]  

  • 5. Last word on point:counterpoint: lactate is/is not the only physicochemical contributor to the acidosis of exercise.
    Lindinger MI; Heigenhauser GJ
    J Appl Physiol (1985); 2008 Jul; 105(1):369. PubMed ID: 18641217
    [No Abstract]   [Full Text] [Related]  

  • 6. Calculation of the equilibrium pH in a multiple-buffered aqueous solution based on partitioning of proton buffering: a new predictive formula.
    Nguyen MK; Kao L; Kurtz I
    Am J Physiol Renal Physiol; 2009 Jun; 296(6):F1521-9. PubMed ID: 19339630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle.
    Pilegaard H; Domino K; Noland T; Juel C; Hellsten Y; Halestrap AP; Bangsbo J
    Am J Physiol; 1999 Feb; 276(2):E255-61. PubMed ID: 9950784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid-base balance at exercise in normoxia and in chronic hypoxia. Revisiting the "lactate paradox".
    Cerretelli P; Samaja M
    Eur J Appl Physiol; 2003 Nov; 90(5-6):431-48. PubMed ID: 14504942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular bicarbonate and non-bicarbonate buffering against lactic acid during and after exercise.
    Böning D; Klarholz C; Himmelsbach B; Hütler M; Maassen N
    Eur J Appl Physiol; 2007 Jul; 100(4):457-67. PubMed ID: 17450372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular pH defense against lactic acid in untrained and trained altitude residents.
    Böning D; Rojas J; Serrato M; Reyes O; Coy L; Mora M
    Eur J Appl Physiol; 2008 May; 103(2):127-37. PubMed ID: 18196263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Science vs. personal bias in acid-base physiology.
    Robergs RA
    J Appl Physiol (1985); 2008 Jul; 105(1):363. PubMed ID: 18680792
    [No Abstract]   [Full Text] [Related]  

  • 12. Counterpoint: Lactic acid is not the only physicochemical contributor to the acidosis of exercise.
    Lindinger MI; Heigenhauser GJ
    J Appl Physiol (1985); 2008 Jul; 105(1):359-61; discussion 361-2. PubMed ID: 18641212
    [No Abstract]   [Full Text] [Related]  

  • 13. Skeletal muscle metabolic and ionic adaptations during intense exercise following sprint training in humans.
    Harmer AR; McKenna MJ; Sutton JR; Snow RJ; Ruell PA; Booth J; Thompson MW; Mackay NA; Stathis CG; Crameri RM; Carey MF; Eager DM
    J Appl Physiol (1985); 2000 Nov; 89(5):1793-803. PubMed ID: 11053328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Counterpoint: lactic acid accumulation is a disadvantage during muscle activity.
    Bangsbo J; Juel C
    J Appl Physiol (1985); 2006 Apr; 100(4):1412-3; discussion 1413-4. PubMed ID: 16646130
    [No Abstract]   [Full Text] [Related]  

  • 15. Point: lactic acid accumulation is an advantage during muscle activity.
    Lamb GD; Stephenson DG
    J Appl Physiol (1985); 2006 Apr; 100(4):1410-2; discussion 1414. PubMed ID: 16540714
    [No Abstract]   [Full Text] [Related]  

  • 16. Response to point:counterpoint on "lactic acid".
    Sahlin K
    J Appl Physiol (1985); 2008 Jul; 105(1):366. PubMed ID: 18680795
    [No Abstract]   [Full Text] [Related]  

  • 17. Skeletal muscle buffer value, fibre type distribution and high intensity exercise performance in man.
    Mannion AF; Jakeman PM; Willan PL
    Exp Physiol; 1995 Jan; 80(1):89-101. PubMed ID: 7734141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origins of [H+] changes in exercising skeletal muscle.
    Lindinger MI
    Can J Appl Physiol; 1995 Sep; 20(3):357-68. PubMed ID: 8541798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle cell volume and pH changes due to glycolytic ATP synthesis.
    Kemp G
    J Physiol; 2007 Jul; 582(Pt 1):461-5; author reply 467-70. PubMed ID: 17446216
    [No Abstract]   [Full Text] [Related]  

  • 20. Lactic acid buffering, nonmetabolic CO2 and exercise hyperventilation: a critical reappraisal.
    Péronnet F; Aguilaniu B
    Respir Physiol Neurobiol; 2006 Jan; 150(1):4-18. PubMed ID: 15890562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.