BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 16760900)

  • 1. Adaptively inferring human transcriptional subnetworks.
    Das D; Nahlé Z; Zhang MQ
    Mol Syst Biol; 2006; 2():2006.0029. PubMed ID: 16760900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data.
    Kim SY; Kim Y
    BMC Bioinformatics; 2006 Jul; 7():330. PubMed ID: 16817975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CompMoby: comparative MobyDick for detection of cis-regulatory motifs.
    Chaivorapol C; Melton C; Wei G; Yeh RF; Ramalho-Santos M; Blelloch R; Li H
    BMC Bioinformatics; 2008 Oct; 9():455. PubMed ID: 18950538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide in silico identification of transcriptional regulators controlling the cell cycle in human cells.
    Elkon R; Linhart C; Sharan R; Shamir R; Shiloh Y
    Genome Res; 2003 May; 13(5):773-80. PubMed ID: 12727897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering transcriptional regulatory elements that encode specific cell cycle phasing by comparative genomics analysis.
    Linhart C; Elkon R; Shiloh Y; Shamir R
    Cell Cycle; 2005 Dec; 4(12):1788-97. PubMed ID: 16294034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PAP: a comprehensive workbench for mammalian transcriptional regulatory sequence analysis.
    Chang LW; Fontaine BR; Stormo GD; Nagarajan R
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W238-44. PubMed ID: 17517777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constructing human transcriptional regulatory subnets from crossgenome comparison and gene expression profile analysis.
    Karmaker A; Harris SE; Kwek S
    OMICS; 2007; 11(4):397-412. PubMed ID: 18092911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data.
    Gao F; Foat BC; Bussemaker HJ
    BMC Bioinformatics; 2004 Mar; 5():31. PubMed ID: 15113405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BRNI: Modular analysis of transcriptional regulatory programs.
    Nachman I; Regev A
    BMC Bioinformatics; 2009 May; 10():155. PubMed ID: 19457258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mouse fetoprotein transcription factor (FTF) gene promoter is regulated by three GATA elements with tandem E box and Nkx motifs, and FTF in turn activates the Hnf3beta, Hnf4alpha, and Hnf1alpha gene promoters.
    Pare JF; Roy S; Galarneau L; Belanger L
    J Biol Chem; 2001 Apr; 276(16):13136-44. PubMed ID: 11145965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring a transcriptional regulatory network from gene expression data using nonlinear manifold embedding.
    Zare H; Kaveh M; Khodursky A
    PLoS One; 2011; 6(8):e21969. PubMed ID: 21857910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide identification of potential plant E2F target genes.
    Vandepoele K; Vlieghe K; Florquin K; Hennig L; Beemster GT; Gruissem W; Van de Peer Y; Inzé D; De Veylder L
    Plant Physiol; 2005 Sep; 139(1):316-28. PubMed ID: 16126853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of transcriptional regulators using binding site enrichment analysis.
    Kim TM; Jung MH
    In Silico Biol; 2006; 6(6):531-44. PubMed ID: 17518763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thyroid hormone-regulated gene expression in juvenile mouse liver: identification of thyroid response elements using microarray profiling and in silico analyses.
    Paquette MA; Dong H; Gagné R; Williams A; Malowany M; Wade MG; Yauk CL
    BMC Genomics; 2011 Dec; 12():634. PubMed ID: 22206413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome profiling of human hepatocytes treated with Aroclor 1254 reveals transcription factor regulatory networks and clusters of regulated genes.
    Reymann S; Borlak J
    BMC Genomics; 2006 Aug; 7():217. PubMed ID: 16934159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic approaches that aid in the identification of transcription factor target genes.
    Kirmizis A; Farnham PJ
    Exp Biol Med (Maywood); 2004 Sep; 229(8):705-21. PubMed ID: 15337825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying regulatory targets of cell cycle transcription factors using gene expression and ChIP-chip data.
    Wu WS; Li WH; Chen BS
    BMC Bioinformatics; 2007 Jun; 8():188. PubMed ID: 17559637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide analysis of factors regulating gene expression in liver.
    Teufel A; Weinmann A; Krupp M; Budinger M; Galle PR
    Gene; 2007 Mar; 389(2):114-21. PubMed ID: 17174484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle.
    Wu WS; Li WH; Chen BS
    BMC Bioinformatics; 2006 Sep; 7():421. PubMed ID: 17010188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell cycle regulation of the murine cdc25B promoter: essential role for nuclear factor-Y and a proximal repressor element.
    Körner K; Jerôme V; Schmidt T; Müller R
    J Biol Chem; 2001 Mar; 276(13):9662-9. PubMed ID: 11104768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.