These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

775 related articles for article (PubMed ID: 16760972)

  • 1. A constitutive law for dense granular flows.
    Jop P; Forterre Y; Pouliquen O
    Nature; 2006 Jun; 441(7094):727-30. PubMed ID: 16760972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signatures of granular microstructure in dense shear flows.
    Mueth DM; Debregeas GF; Karczmar GS; Eng PJ; Nagel SR; Jaeger HM
    Nature; 2000 Jul; 406(6794):385-9. PubMed ID: 10935630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partially fluidized shear granular flows: continuum theory and molecular dynamics simulations.
    Volfson D; Tsimring LS; Aranson IS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021301. PubMed ID: 14524963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A non-local rheology for dense granular flows.
    Pouliquen O; Forterre Y
    Philos Trans A Math Phys Eng Sci; 2009 Dec; 367(1909):5091-107. PubMed ID: 19933129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheophysics of dense granular materials: discrete simulation of plane shear flows.
    da Cruz F; Emam S; Prochnow M; Roux JN; Chevoir F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021309. PubMed ID: 16196558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a theoretical picture of dense granular flows down inclines.
    Delannay R; Louge M; Richard P; Taberlet N; Valance A
    Nat Mater; 2007 Feb; 6(2):99-108. PubMed ID: 17268496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open problems in active chaotic flows: Competition between chaos and order in granular materials.
    Ottino JM; Khakhar DV
    Chaos; 2002 Jun; 12(2):400-407. PubMed ID: 12779570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear instabilities in granular flows.
    Goldfarb DJ; Glasser BJ; Shinbrot T
    Nature; 2002 Jan; 415(6869):302-5. PubMed ID: 11797003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydraulic theory for a debris flow supported on a collisional shear layer.
    Jenkins JT; Askari E
    Chaos; 1999 Sep; 9(3):654-658. PubMed ID: 12779861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuum approach to wide shear zones in quasistatic granular matter.
    Depken M; van Saarloos W; van Hecke M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031302. PubMed ID: 16605512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constitutive relations for steady, dense granular flows.
    Berzi D; di Prisco CG; Vescovi D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031301. PubMed ID: 22060355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Taylor vortex analogy in granular flows.
    Conway SL; Shinbrot T; Glasser BJ
    Nature; 2004 Sep; 431(7007):433-7. PubMed ID: 15386007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dry granular flows down an inclined channel: experimental investigations on the frictional-collisional regime.
    Ancey C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 1):011304. PubMed ID: 11800690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A predictive, size-dependent continuum model for dense granular flows.
    Henann DL; Kamrin K
    Proc Natl Acad Sci U S A; 2013 Apr; 110(17):6730-5. PubMed ID: 23536300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress transmission through a model system of cohesionless elastic grains.
    Da Silva M ; Rajchenbach J
    Nature; 2000 Aug; 406(6797):708-10. PubMed ID: 10963591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study of granular flows in a rough annular shear cell.
    Jasti V; Higgs CF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041306. PubMed ID: 18999417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scales and kinetics of granular flows.
    Goldhirsch I
    Chaos; 1999 Sep; 9(3):659-672. PubMed ID: 12779862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stationary shear flows of dense granular materials: a tentative continuum modelling.
    Josserand C; Lagrée PY; Lhuillier D
    Eur Phys J E Soft Matter; 2004 Jun; 14(2):127-35. PubMed ID: 15254832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermittency of rheological regimes in uniform liquid-granular flows.
    Armanini A; Larcher M; Fraccarollo L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051306. PubMed ID: 19518448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model for dense granular flows down bumpy inclines.
    Louge MY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061303. PubMed ID: 16241217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.