These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 16761061)

  • 1. Steady-state directional diffuse reflectance and fluorescence of human skin.
    Katika KM; Pilon L
    Appl Opt; 2006 Jun; 45(17):4174-83. PubMed ID: 16761061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and simulated angular profiles of fluorescence and diffuse reflectance emission from turbid media.
    Gebhart SC; Mahadevan-Jansen A; Lin WC
    Appl Opt; 2005 Aug; 44(23):4884-901. PubMed ID: 16114526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media.
    Liebert A; Wabnitz H; Zołek N; Macdonald R
    Opt Express; 2008 Aug; 16(17):13188-202. PubMed ID: 18711557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic and microscopic characteristics of human skin autofluorescence emission.
    Zeng H; MacAulay C; McLean DI; Palcic B
    Photochem Photobiol; 1995 Jun; 61(6):639-45. PubMed ID: 7568410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of spatially resolved fluorescence and reflectance to determine interface depth in layered fluorophore distributions.
    Stasic D; Farrell TJ; Patterson MS
    Phys Med Biol; 2003 Nov; 48(21):3459-74. PubMed ID: 14653556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence.
    Diamond KR; Farrell TJ; Patterson MS
    Phys Med Biol; 2003 Dec; 48(24):4135-49. PubMed ID: 14727757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering.
    Bremmer RH; van Gemert MJ; Faber DJ; van Leeuwen TG; Aalders MC
    J Biomed Opt; 2013 Aug; 18(8):87007. PubMed ID: 23986392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the modified spherical harmonics method to some problems in biomedical optics.
    Xu H; Patterson MS
    Phys Med Biol; 2006 Jun; 51(12):N247-51. PubMed ID: 16757857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain.
    Pan T; Rasmussen JC; Lee JH; Sevick-Muraca EM
    Med Phys; 2007 Apr; 34(4):1298-311. PubMed ID: 17500461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical model to interpret localized reflectance spectra measured in the presence of a strong fluorescence marker.
    Bravo JJ; Davis SC; Roberts DW; Paulsen KD; Kanick SC
    J Biomed Opt; 2016 Jun; 21(6):61004. PubMed ID: 26836297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy.
    Tseng SH; Grant A; Durkin AJ
    J Biomed Opt; 2008; 13(1):014016. PubMed ID: 18315374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amending of fluorescence sensor signal localization in human skin by matching of the refractive index.
    Churmakov DY; Meglinski IV; Greenhalgh DA
    J Biomed Opt; 2004; 9(2):339-46. PubMed ID: 15065900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of scattering volume fraction and particle size distribution in the superficial layer of a turbid medium by using diffuse reflectance spectroscopy.
    Fawzy YS; Zeng H
    Appl Opt; 2006 Jun; 45(16):3902-12. PubMed ID: 16724156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bispectral coding: compressive and high-quality acquisition of fluorescence and reflectance.
    Suo J; Bian L; Chen F; Dai Q
    Opt Express; 2014 Jan; 22(2):1697-712. PubMed ID: 24515177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of simplified Monte Carlo simulation and diffusion approximation for the fluorescence signal from phantoms with typical mouse tissue optical properties.
    Ma G; Delorme JF; Gallant P; Boas DA
    Appl Opt; 2007 Apr; 46(10):1686-92. PubMed ID: 17356611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiative transfer equation for predicting light propagation in biological media: comparison of a modified finite volume method, the Monte Carlo technique, and an exact analytical solution.
    Asllanaj F; Contassot-Vivier S; Liemert A; Kienle A
    J Biomed Opt; 2014 Jan; 19(1):15002. PubMed ID: 24390371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of diffuse and specular components of surface reflection by use of polarization and statistical analysis of images.
    Umeyama S; Godin G
    IEEE Trans Pattern Anal Mach Intell; 2004 May; 26(5):639-47. PubMed ID: 15460284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium.
    Hall D; Ma G; Lesage F; Wang Y
    Opt Lett; 2004 Oct; 29(19):2258-60. PubMed ID: 15524373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of light scattering models for diffuse optical tomography.
    González-Rodríguez P; Kim AD
    Opt Express; 2009 May; 17(11):8756-74. PubMed ID: 19466125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo assessment and evaluation of lung tissue morphologic and physiological changes from non-contact endoscopic reflectance spectroscopy for improving lung cancer detection.
    Fawzy YS; Petek M; Tercelj M; Zeng H
    J Biomed Opt; 2006; 11(4):044003. PubMed ID: 16965160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.