These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 16761087)

  • 1. Theoretical investigation of the behavior of titratable groups in proteins.
    Klingen AR; Bombarda E; Ullmann GM
    Photochem Photobiol Sci; 2006 Jun; 5(6):588-96. PubMed ID: 16761087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-range nature of the interactions between titratable groups in Bacillus agaradhaerens family 11 xylanase: pH titration of B. agaradhaerens xylanase.
    Betz M; Löhr F; Wienk H; Rüterjans H
    Biochemistry; 2004 May; 43(19):5820-31. PubMed ID: 15134456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of electrostatic interaction energies and protonation state populations in enzyme active sites.
    Søndergaard CR; McIntosh LP; Pollastri G; Nielsen JE
    J Mol Biol; 2008 Feb; 376(1):269-87. PubMed ID: 18155242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of a transmembrane pH gradient on protonation probabilities of bacteriorhodopsin: the structural basis of the back-pressure effect.
    Calimet N; Ullmann GM
    J Mol Biol; 2004 Jun; 339(3):571-89. PubMed ID: 15147843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing enzymatic pH activity profiles and protein titration curves using structure-based pKa calculations and titration curve fitting.
    Nielsen JE
    Methods Enzymol; 2009; 454():233-58. PubMed ID: 19216929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assignment of polar states for protein amino acid residues using an interaction cluster decomposition algorithm and its application to high resolution protein structure modeling.
    Li X; Jacobson MP; Zhu K; Zhao S; Friesner RA
    Proteins; 2007 Mar; 66(4):824-37. PubMed ID: 17154422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protonation free energy levels in complex molecular systems.
    Antosiewicz JM
    Biopolymers; 2008 Apr; 89(4):262-9. PubMed ID: 17806123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural selection for kinetic stability is a likely origin of correlations between mutational effects on protein energetics and frequencies of amino acid occurrences in sequence alignments.
    Godoy-Ruiz R; Ariza F; Rodriguez-Larrea D; Perez-Jimenez R; Ibarra-Molero B; Sanchez-Ruiz JM
    J Mol Biol; 2006 Oct; 362(5):966-78. PubMed ID: 16935299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implications of a high dielectric constant in proteins.
    Lund M; Jönsson B; Woodward CE
    J Chem Phys; 2007 Jun; 126(22):225103. PubMed ID: 17581083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-contacts in Asx and Glx residues of high-resolution protein structures: role of local environment and tertiary interactions.
    Pal TK; Sankararamakrishnan R
    J Mol Graph Model; 2008 Aug; 27(1):20-33. PubMed ID: 18343699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Hill plot of NMR data for titration of proteins residues.
    Roux-Fromy M
    Biophys Struct Mech; 1982; 8(4):289-306. PubMed ID: 7115890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the NMR analysis of pKa values in the unfolded state of proteins by extrapolation to zero denaturant.
    Quijada J; López G; Versace R; Ramírez L; Tasayco ML
    Biophys Chem; 2007 Sep; 129(2-3):242-50. PubMed ID: 17611012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel view of pH titration in biomolecules.
    Onufriev A; Case DA; Ullmann GM
    Biochemistry; 2001 Mar; 40(12):3413-9. PubMed ID: 11297406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuum electrostatic analysis of irregular ionization and proton allocation in proteins.
    Koumanov A; Rüterjans H; Karshikoff A
    Proteins; 2002 Jan; 46(1):85-96. PubMed ID: 11746705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pK(a) values and redox potentials of proteins. What do they mean?
    Ullmann GM; Bombarda E
    Biol Chem; 2013 May; 394(5):611-9. PubMed ID: 23362202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying folding nucleus based on residue contact networks of proteins.
    Li J; Wang J; Wang W
    Proteins; 2008 Jun; 71(4):1899-907. PubMed ID: 18175318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the residue-residue coevolution network and the functionally important residues in proteins.
    Lee BC; Park K; Kim D
    Proteins; 2008 Aug; 72(3):863-72. PubMed ID: 18275083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the membrane potential on the protonation of bacteriorhodopsin: insights from electrostatic calculations into the regulation of proton pumping.
    Bombarda E; Becker T; Ullmann GM
    J Am Chem Soc; 2006 Sep; 128(37):12129-39. PubMed ID: 16967962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionization properties of titratable groups in ribonuclease T1. II. Electrostatic analysis.
    Koumanov A; Spitzner N; Rüterjans H; Karshikoff A
    Eur Biophys J; 2001 Jul; 30(3):198-206. PubMed ID: 11508839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying protein microstructure and electrostatic effects on the change in Gibbs free energy of binding in immobilized metal affinity chromatography.
    Pathange LP; Bevan DR; Zhang C
    Anal Chem; 2008 Mar; 80(5):1628-40. PubMed ID: 18229947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.