These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 16761142)

  • 1. Space invaders? A search for patterns underlying the coexistence of alien black rats and Galápagos rice rats.
    Harris DB; Gregory SD; Macdonald DW
    Oecologia; 2006 Aug; 149(2):276-88. PubMed ID: 16761142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interference competition between introduced black rats and endemic Galápagos rice rats.
    Harris DB; Macdonald DW
    Ecology; 2007 Sep; 88(9):2330-44. PubMed ID: 17918410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prickly coexistence or blunt competition? Opuntia refugia in an invaded rodent community.
    Gregory SD; Macdonald DW
    Oecologia; 2009 Feb; 159(1):225-36. PubMed ID: 18998171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Some analyses and recommendations on diet formulation for conservation breeding of the Galapagos rice rat of Isla Santiago, Nesoryzomys swarthi.
    Wharton D; Dowler R; Watts J
    Zoo Biol; 2012; 31(4):498-505. PubMed ID: 22553176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feeding Habits of Introduced Black Rats, Rattus rattus, in Nesting Colonies of Galapagos Petrel on San Cristóbal Island, Galapagos.
    Riofrío-Lazo M; Páez-Rosas D
    PLoS One; 2015; 10(5):e0127901. PubMed ID: 25984724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Same size--same niche? Foraging niche separation between sympatric juvenile Galapagos sea lions and adult Galapagos fur seals.
    Jeglinski JW; Goetz KT; Werner C; Costa DP; Trillmich F
    J Anim Ecol; 2013 May; 82(3):694-706. PubMed ID: 23351022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryptic diversity in Black rats
    Willows-Munro S; Dowler RC; Jarcho MR; Phillips RB; Snell HL; Wilbert TR; Edwards CW
    Ecol Evol; 2016 Jun; 6(11):3721-3733. PubMed ID: 27231528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equivalency of Galápagos giant tortoises used as ecological replacement species to restore ecosystem functions.
    Hunter EA; Gibbs JP; Cayot LJ; Tapia W
    Conserv Biol; 2013 Aug; 27(4):701-9. PubMed ID: 23530938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of non-random dispersal strategies on spatial coexistence mechanisms.
    Amarasekare P
    J Anim Ecol; 2010 Jan; 79(1):282-93. PubMed ID: 19682160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resource partitioning facilitates coexistence in sympatric cetaceans in the California Current.
    Fossette S; Abrahms B; Hazen EL; Bograd SJ; Zilliacus KM; Calambokidis J; Burrows JA; Goldbogen JA; Harvey JT; Marinovic B; Tershy B; Croll DA
    Ecol Evol; 2017 Nov; 7(21):9085-9097. PubMed ID: 29152200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatio-temporal microhabitat use by two co-occurring species of scorpions in Atlantic rainforest in Brazil.
    Lira AF; Souza AM; Silva Filho AA; Albuquerque CM
    Zoology (Jena); 2013 Jun; 116(3):182-5. PubMed ID: 23664851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ideal free distribution of metabolic activity: Implications of seasonal metabolic-activity patterns on competitive coexistence.
    Szabó P
    Theor Popul Biol; 2016 Oct; 111():1-8. PubMed ID: 27189108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing density leads to generalization in both coarse-grained habitat selection and fine-grained resource selection in a large mammal.
    van Beest FM; Uzal A; Vander Wal E; Laforge MP; Contasti AL; Colville D; McLoughlin PD
    J Anim Ecol; 2014 Jan; 83(1):147-56. PubMed ID: 23931034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Darwin's finches and their diet niches: the sympatric coexistence of imperfect generalists.
    De León LF; Podos J; Gardezi T; Herrel A; Hendry AP
    J Evol Biol; 2014 Jun; 27(6):1093-104. PubMed ID: 24750315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Species coexistence in a lattice-structured habitat: effects of species dispersal and interactions.
    Ying Z; Liao J; Wang S; Lu H; Liu Y; Ma L; Li Z
    J Theor Biol; 2014 Oct; 359():184-91. PubMed ID: 24937800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the movement of Rattus rattus and evaluation of the plague dispersion in Madagascar.
    Rahelinirina S; Duplantier JM; Ratovonjato J; Ramilijaona O; Ratsimba M; Rahalison L
    Vector Borne Zoonotic Dis; 2010; 10(1):77-84. PubMed ID: 20158335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of spatial niche structure in coexisting tidepool fishes: null models based on multi-scale experiments.
    Arakaki S; Tokeshi M
    J Anim Ecol; 2011 Jan; 80(1):137-47. PubMed ID: 20796205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Space use variation in co-occurring sister species: response to environmental variation or competition?
    Dufour CM; Meynard C; Watson J; Rioux C; Benhamou S; Perez J; du Plessis JJ; Avenant N; Pillay N; Ganem G
    PLoS One; 2015; 10(2):e0117750. PubMed ID: 25693176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Niche partitioning and environmental factors affecting abundance of strepsirrhines in Angola.
    Bersacola E; Svensson MS; Bearder SK
    Am J Primatol; 2015 Nov; 77(11):1179-92. PubMed ID: 26288244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competition and habitat use in native Australian Rattus: is competition intense, or important?
    Maitz WE; Dickman CR
    Oecologia; 2001 Aug; 128(4):526-538. PubMed ID: 28547398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.