These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 16761843)
1. Continuous shared control for stabilizing reaching and grasping with brain-machine interfaces. Kim HK; Biggs SJ; Schloerb DW; Carmena JM; Lebedev MA; Nicolelis MA; Srinivasan MA IEEE Trans Biomed Eng; 2006 Jun; 53(6):1164-73. PubMed ID: 16761843 [TBL] [Abstract][Full Text] [Related]
2. Control of a humanoid robot by a noninvasive brain-computer interface in humans. Bell CJ; Shenoy P; Chalodhorn R; Rao RP J Neural Eng; 2008 Jun; 5(2):214-20. PubMed ID: 18483450 [TBL] [Abstract][Full Text] [Related]
3. A study on a robot arm driven by three-dimensional trajectories predicted from non-invasive neural signals. Kim YJ; Park SW; Yeom HG; Bang MS; Kim JS; Chung CK; Kim S Biomed Eng Online; 2015 Aug; 14():81. PubMed ID: 26290069 [TBL] [Abstract][Full Text] [Related]
4. My thoughts through a robot's eyes: an augmented reality-brain-machine interface. Kansaku K; Hata N; Takano K Neurosci Res; 2010 Feb; 66(2):219-22. PubMed ID: 19853630 [TBL] [Abstract][Full Text] [Related]
5. A review on directional information in neural signals for brain-machine interfaces. Waldert S; Pistohl T; Braun C; Ball T; Aertsen A; Mehring C J Physiol Paris; 2009; 103(3-5):244-54. PubMed ID: 19665554 [TBL] [Abstract][Full Text] [Related]
6. An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network. Hazrati MKh; Erfanian A Med Eng Phys; 2010 Sep; 32(7):730-9. PubMed ID: 20510641 [TBL] [Abstract][Full Text] [Related]
7. Error-related EEG potentials generated during simulated brain-computer interaction. Ferrez PW; del R Millan J IEEE Trans Biomed Eng; 2008 Mar; 55(3):923-9. PubMed ID: 18334383 [TBL] [Abstract][Full Text] [Related]
8. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot. Ju MS; Lin CC; Lin DH; Hwang IS; Chen SM IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):349-58. PubMed ID: 16200758 [TBL] [Abstract][Full Text] [Related]
9. Application of EMG signals for controlling exoskeleton robots. Fleischer C; Wege A; Kondak K; Hommel G Biomed Tech (Berl); 2006 Dec; 51(5-6):314-9. PubMed ID: 17155866 [TBL] [Abstract][Full Text] [Related]
10. Ten-dimensional anthropomorphic arm control in a human brain-machine interface: difficulties, solutions, and limitations. Wodlinger B; Downey JE; Tyler-Kabara EC; Schwartz AB; Boninger ML; Collinger JL J Neural Eng; 2015 Feb; 12(1):016011. PubMed ID: 25514320 [TBL] [Abstract][Full Text] [Related]
11. Standing-up robot: an assistive rehabilitative device for training and assessment. Kamnik R; Bajd T J Med Eng Technol; 2004; 28(2):74-80. PubMed ID: 14965861 [TBL] [Abstract][Full Text] [Related]
12. Developments in brain-machine interfaces from the perspective of robotics. Kim HK; Park S; Srinivasan MA Hum Mov Sci; 2009 Apr; 28(2):191-203. PubMed ID: 19230997 [TBL] [Abstract][Full Text] [Related]
13. Development of anthropomorphic multi-D.O.F. master-slave arm for mutual telexistence. Tadakuma R; Asahara Y; Kajimoto H; Kawakami N; Tachi S IEEE Trans Vis Comput Graph; 2005; 11(6):626-36. PubMed ID: 16270856 [TBL] [Abstract][Full Text] [Related]
14. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping. Downey JE; Weiss JM; Muelling K; Venkatraman A; Valois JS; Hebert M; Bagnell JA; Schwartz AB; Collinger JL J Neuroeng Rehabil; 2016 Mar; 13():28. PubMed ID: 26987662 [TBL] [Abstract][Full Text] [Related]
15. Information conveyed through brain-control: cursor versus robot. Taylor DM; Tillery SI; Schwartz AB IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):195-9. PubMed ID: 12899273 [TBL] [Abstract][Full Text] [Related]
16. Prediction of arm movement trajectories from ECoG-recordings in humans. Pistohl T; Ball T; Schulze-Bonhage A; Aertsen A; Mehring C J Neurosci Methods; 2008 Jan; 167(1):105-14. PubMed ID: 18022247 [TBL] [Abstract][Full Text] [Related]
17. Brain-computer interfaces for control of neuroprostheses: from synchronous to asynchronous mode of operation. Müller-Putz GR; Scherer R; Pfurtscheller G; Rupp R Biomed Tech (Berl); 2006 Jul; 51(2):57-63. PubMed ID: 16915766 [TBL] [Abstract][Full Text] [Related]
18. Neural ensemble activity from multiple brain regions predicts kinematic and dynamic variables in a multiple force field reaching task. Francis JT; Chapin JK IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):172-4. PubMed ID: 16792286 [TBL] [Abstract][Full Text] [Related]
19. A brain-actuated wheelchair: asynchronous and non-invasive Brain-computer interfaces for continuous control of robots. Galán F; Nuttin M; Lew E; Ferrez PW; Vanacker G; Philips J; Millán Jdel R Clin Neurophysiol; 2008 Sep; 119(9):2159-69. PubMed ID: 18621580 [TBL] [Abstract][Full Text] [Related]
20. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces. Wang Y; Paiva AR; Príncipe JC; Sanchez JC Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]