These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 16762025)
1. The poor growth of Rhodospirillum rubrum mutants lacking PII proteins is due to an excess of glutamine synthetase activity. Zhang Y; Pohlmann EL; Conrad MC; Roberts GP Mol Microbiol; 2006 Jul; 61(2):497-510. PubMed ID: 16762025 [TBL] [Abstract][Full Text] [Related]
2. Reduced activity of glutamine synthetase in Rhodospirillum rubrum mutants lacking the adenylyltransferase GlnE. Jonsson A; Nordlund S; Teixeira PF Res Microbiol; 2009 Oct; 160(8):581-4. PubMed ID: 19761831 [TBL] [Abstract][Full Text] [Related]
3. Mutagenesis and functional characterization of the glnB, glnA, and nifA genes from the photosynthetic bacterium Rhodospirillum rubrum. Zhang Y; Pohlmann EL; Ludden PW; Roberts GP J Bacteriol; 2000 Feb; 182(4):983-92. PubMed ID: 10648524 [TBL] [Abstract][Full Text] [Related]
4. Effects of PII deficiency on expression of the genes involved in ammonium utilization in the cyanobacterium Synechocystis sp. Strain PCC 6803. Takatani N; Omata T Plant Cell Physiol; 2006 Jun; 47(6):679-88. PubMed ID: 16549396 [TBL] [Abstract][Full Text] [Related]
5. GlnD is essential for NifA activation, NtrB/NtrC-regulated gene expression, and posttranslational regulation of nitrogenase activity in the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum. Zhang Y; Pohlmann EL; Roberts GP J Bacteriol; 2005 Feb; 187(4):1254-65. PubMed ID: 15687189 [TBL] [Abstract][Full Text] [Related]
6. Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli. Atkinson MR; Ninfa AJ Mol Microbiol; 1998 Jul; 29(2):431-47. PubMed ID: 9720863 [TBL] [Abstract][Full Text] [Related]
7. A source of ultrasensitivity in the glutamine response of the bicyclic cascade system controlling glutamine synthetase adenylylation state and activity in Escherichia coli. Jiang P; Ninfa AJ Biochemistry; 2011 Dec; 50(50):10929-40. PubMed ID: 22085244 [TBL] [Abstract][Full Text] [Related]
8. [The role of AmtB, GlnK and glutamine synthetase in regulation of transcription factor TnrA in Bacillus subtilis]. Fedorova KP; Tarasov NV; Halitova DV; Il'inskaia ON; Barabanshchikov BI; Kaiumov AR Tsitologiia; 2012; 54(12):898-901. PubMed ID: 23461034 [TBL] [Abstract][Full Text] [Related]
9. Reversible adenylylation of glutamine synthetase is dynamically counterbalanced during steady-state growth of Escherichia coli. Okano H; Hwa T; Lenz P; Yan D J Mol Biol; 2010 Dec; 404(3):522-36. PubMed ID: 20887734 [TBL] [Abstract][Full Text] [Related]
10. Regulation of carbon and nitrogen utilization by CbrAB and NtrBC two-component systems in Pseudomonas aeruginosa. Li W; Lu CD J Bacteriol; 2007 Aug; 189(15):5413-20. PubMed ID: 17545289 [TBL] [Abstract][Full Text] [Related]
11. The activity of adenylyltransferase in Rhodospirillum rubrum is only affected by alpha-ketoglutarate and unmodified PII proteins, but not by glutamine, in vitro. Jonsson A; Teixeira PF; Nordlund S FEBS J; 2007 May; 274(10):2449-60. PubMed ID: 17419734 [TBL] [Abstract][Full Text] [Related]
12. Structure-function analysis of glutamine synthetase adenylyltransferase (ATase, EC 2.7.7.49) of Escherichia coli. Jiang P; Pioszak AA; Ninfa AJ Biochemistry; 2007 Apr; 46(13):4117-32. PubMed ID: 17355124 [TBL] [Abstract][Full Text] [Related]
13. Identification of Rhodospirillum rubrum GlnB variants that are altered in their ability to interact with different targets in response to nitrogen status signals. Zhu Y; Conrad MC; Zhang Y; Roberts GP J Bacteriol; 2006 Mar; 188(5):1866-74. PubMed ID: 16484197 [TBL] [Abstract][Full Text] [Related]
14. Involvement of GlnK, a PII protein, in control of nitrogen fixation and ammonia assimilation in Pseudomonas stutzeri A1501. He S; Chen M; Xie Z; Yan Y; Li H; Fan Y; Ping S; Lin M; Elmerich C Arch Microbiol; 2008 Jul; 190(1):1-10. PubMed ID: 18274728 [TBL] [Abstract][Full Text] [Related]
15. Role of GlnR in Controlling Expression of Nitrogen Metabolism Genes in Biswas R; Sonenshein AL; Belitsky BR J Bacteriol; 2020 Sep; 202(19):. PubMed ID: 32690554 [No Abstract] [Full Text] [Related]
16. A theoretical steady state analysis indicates that induction of Escherichia coli glnALG operon can display all-or-none behavior. Mutalik VK; Venkatesh KV Biosystems; 2007; 90(1):1-19. PubMed ID: 16945478 [TBL] [Abstract][Full Text] [Related]
17. Interaction of the signal transduction protein GlnJ with the cellular targets AmtB1, GlnE and GlnD in Rhodospirillum rubrum: dependence on manganese, 2-oxoglutarate and the ADP/ATP ratio. Teixeira PF; Jonsson A; Frank M; Wang H; Nordlund S Microbiology (Reading); 2008 Aug; 154(Pt 8):2336-2347. PubMed ID: 18667566 [TBL] [Abstract][Full Text] [Related]
18. Interplay between CRP-cAMP and PII-Ntr systems forms novel regulatory network between carbon metabolism and nitrogen assimilation in Escherichia coli. Mao XJ; Huo YX; Buck M; Kolb A; Wang YP Nucleic Acids Res; 2007; 35(5):1432-40. PubMed ID: 17284458 [TBL] [Abstract][Full Text] [Related]
19. Diazotrophic growth of Rhodospirillum rubrum with 2-oxoglutarate as sole carbon source affects regulation of nitrogen metabolism as well as the soluble proteome. Teixeira PF; Selao TT; Henriksson V; Wang H; Norén A; Nordlund S Res Microbiol; 2010 Oct; 161(8):651-9. PubMed ID: 20600859 [TBL] [Abstract][Full Text] [Related]
20. Transposon mutations in the 5' end of glnD, the gene for a nitrogen regulatory sensor, that suppress the osmosensitive phenotype caused by otsBA lesions in Escherichia coli. Tøndervik A; Torgersen HR; Botnmark HK; Strøm AR J Bacteriol; 2006 Jun; 188(12):4218-26. PubMed ID: 16740928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]