These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 16762025)
21. The domains carrying the opposing activities in adenylyltransferase are separated by a central regulatory domain. Clancy P; Xu Y; van Heeswijk WC; Vasudevan SG; Ollis DL FEBS J; 2007 Jun; 274(11):2865-77. PubMed ID: 17488285 [TBL] [Abstract][Full Text] [Related]
22. The transcriptional activator NtrC controls the expression and activity of glutamine synthetase in Herbaspirillum seropedicae. Persuhn DC; Souza EM; Steffens MB; Pedrosa FO; Yates MG; Rigo LU FEMS Microbiol Lett; 2000 Nov; 192(2):217-21. PubMed ID: 11064198 [TBL] [Abstract][Full Text] [Related]
23. The regulation of Escherichia coli glutamine synthetase revisited: role of 2-ketoglutarate in the regulation of glutamine synthetase adenylylation state. Jiang P; Peliska JA; Ninfa AJ Biochemistry; 1998 Sep; 37(37):12802-10. PubMed ID: 9737857 [TBL] [Abstract][Full Text] [Related]
24. In vitro proof of direct regulation of glutamine synthetase by GlnK proteins in the extreme halophilic archaeon Haloferax mediterranei. Pedro-Roig L; Camacho M; Bonete MJ Biochem Soc Trans; 2011 Jan; 39(1):259-62. PubMed ID: 21265784 [TBL] [Abstract][Full Text] [Related]
25. Specificity and regulation of interaction between the PII and AmtB1 proteins in Rhodospirillum rubrum. Wolfe DM; Zhang Y; Roberts GP J Bacteriol; 2007 Oct; 189(19):6861-9. PubMed ID: 17644595 [TBL] [Abstract][Full Text] [Related]
26. Lethality of glnD null mutations in Azotobacter vinelandii is suppressible by prevention of glutamine synthetase adenylylation. Colnaghi R; Rudnick P; He L; Green A; Yan D; Larson E; Kennedy C Microbiology (Reading); 2001 May; 147(Pt 5):1267-1276. PubMed ID: 11320130 [TBL] [Abstract][Full Text] [Related]
27. Glutamine synthetases of Corynebacterium glutamicum: transcriptional control and regulation of activity. Nolden L; Farwick M; Krämer R; Burkovski A FEMS Microbiol Lett; 2001 Jul; 201(1):91-8. PubMed ID: 11445173 [TBL] [Abstract][Full Text] [Related]
28. All four Mycobacterium tuberculosis glnA genes encode glutamine synthetase activities but only GlnA1 is abundantly expressed and essential for bacterial homeostasis. Harth G; Maslesa-Galić S; Tullius MV; Horwitz MA Mol Microbiol; 2005 Nov; 58(4):1157-72. PubMed ID: 16262797 [TBL] [Abstract][Full Text] [Related]
29. Purification of P(II) and P(II)-UMP and in vitro studies of regulation of glutamine synthetase in Rhodospirillum rubrum. Johansson M; Nordlund S J Bacteriol; 1999 Oct; 181(20):6524-9. PubMed ID: 10515945 [TBL] [Abstract][Full Text] [Related]
30. Expression of P(II) and glutamine synthetase is regulated by P(II), the ntrBC products, and processing of the glnBA mRNA in Rhodospirillum rubrum. Cheng J; Johansson M; Nordlund S J Bacteriol; 1999 Oct; 181(20):6530-4. PubMed ID: 10515946 [TBL] [Abstract][Full Text] [Related]
31. The pivotal regulator GlnB of Escherichia coli is engaged in subtle and context-dependent control. van Heeswijk WC; Molenaar D; Hoving S; Westerhoff HV FEBS J; 2009 Jun; 276(12):3324-40. PubMed ID: 19438718 [TBL] [Abstract][Full Text] [Related]
32. Identification of the glutamine synthetase adenylyltransferase of Azospirillum brasilense. Van Dommelen A; Spaepen S; Vanderleyden J Res Microbiol; 2009 Apr; 160(3):205-12. PubMed ID: 19366628 [TBL] [Abstract][Full Text] [Related]
33. The role of adenylyltransferase and uridylyltransferase in the regulation of glutamine synthetase in Escherichia coli. Rhee SG; Park SC; Koo JH Curr Top Cell Regul; 1985; 27():221-32. PubMed ID: 2868842 [TBL] [Abstract][Full Text] [Related]
34. Nitrogen metabolism in Streptomyces coelicolor: transcriptional and post-translational regulation. Reuther J; Wohlleben W J Mol Microbiol Biotechnol; 2007; 12(1-2):139-46. PubMed ID: 17183221 [TBL] [Abstract][Full Text] [Related]
35. Role of glnB and glnD gene products in regulation of the glnALG operon of Escherichia coli. Bueno R; Pahel G; Magasanik B J Bacteriol; 1985 Nov; 164(2):816-22. PubMed ID: 2865248 [TBL] [Abstract][Full Text] [Related]
36. Diazotrophic Growth Allows Azotobacter vinelandii To Overcome the Deleterious Effects of a Mus F; Tseng A; Dixon R; Peters JW Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28432097 [TBL] [Abstract][Full Text] [Related]
37. Deletion of the Gibberella fujikuroi glutamine synthetase gene has significant impact on transcriptional control of primary and secondary metabolism. Teichert S; Schönig B; Richter S; Tudzynski B Mol Microbiol; 2004 Sep; 53(6):1661-75. PubMed ID: 15341646 [TBL] [Abstract][Full Text] [Related]
38. Reversible membrane association of dinitrogenase reductase activating glycohydrolase in the regulation of nitrogenase activity in Rhodospirillum rubrum; dependence on GlnJ and AmtB1. Wang H; Franke CC; Nordlund S; Norén A FEMS Microbiol Lett; 2005 Dec; 253(2):273-9. PubMed ID: 16243452 [TBL] [Abstract][Full Text] [Related]
39. Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2.7.7.59) of Escherichia coli and its interaction with the PII protein. Jiang P; Peliska JA; Ninfa AJ Biochemistry; 1998 Sep; 37(37):12782-94. PubMed ID: 9737855 [TBL] [Abstract][Full Text] [Related]
40. Effect of an ntrBC mutation on the posttranslational regulation of nitrogenase activity in Rhodospirillum rubrum. Zhang Y; Cummings AD; Burris RH; Ludden PW; Roberts GP J Bacteriol; 1995 Sep; 177(18):5322-6. PubMed ID: 7665521 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]