These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 16762057)

  • 1. Simple sequence proteins in prokaryotic proteomes.
    Subramanyam MB; Gnanamani M; Ramachandran S
    BMC Genomics; 2006 Jun; 7():141. PubMed ID: 16762057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Nanoarchaeum equitans genome and proteome composition: indications for hyperthermophilic and parasitic adaptation.
    Das S; Paul S; Bag SK; Dutta C
    BMC Genomics; 2006 Jul; 7():186. PubMed ID: 16869956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen versus carbon use in prokaryotic genomes and proteomes.
    Bragg JG; Hyder CL
    Proc Biol Sci; 2004 Aug; 271 Suppl 5(Suppl 5):S374-7. PubMed ID: 15504022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferred codons and amino acid couples in hyperthermophiles.
    De Farias ST; Bonato MC
    Genome Biol; 2002 Jul; 3(8):PREPRINT0006. PubMed ID: 12186639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal biases in protein composition of model prokaryotes.
    Pascal G; Médigue C; Danchin A
    Proteins; 2005 Jul; 60(1):27-35. PubMed ID: 15849754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compositional dynamics of guanine and cytosine content in prokaryotic genomes.
    Hu J; Zhao X; Zhang Z; Yu J
    Res Microbiol; 2007 May; 158(4):363-70. PubMed ID: 17449227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid coupling patterns in thermophilic proteins.
    Liang HK; Huang CM; Ko MT; Hwang JK
    Proteins; 2005 Apr; 59(1):58-63. PubMed ID: 15688447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of mutational bias and natural selection on genome-wide nucleotide bias in prokaryotic organisms.
    Banerjee T; Gupta SK; Ghosh TC
    Biosystems; 2005 Jul; 81(1):11-8. PubMed ID: 15917123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytosine usage modulates the correlation between CDS length and CG content in prokaryotic genomes.
    Xia X; Wang H; Xie Z; Carullo M; Huang H; Hickey D
    Mol Biol Evol; 2006 Jul; 23(7):1450-4. PubMed ID: 16687416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of secondary structure elements by specific combinations of hydrophilic and hydrophobic amino acid residues is more important for proteins encoded by GC-poor genes.
    Khrustalev VV; Barkovsky EV
    Biochimie; 2012 Dec; 94(12):2706-15. PubMed ID: 22930059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Codon bias signatures, organization of microorganisms in codon space, and lifestyle.
    Carbone A; Képès F; Zinovyev A
    Mol Biol Evol; 2005 Mar; 22(3):547-61. PubMed ID: 15537809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stability of thermophilic proteins: a study based on comprehensive genome comparison.
    Das R; Gerstein M
    Funct Integr Genomics; 2000 May; 1(1):76-88. PubMed ID: 11793224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid variation in cellular processes in 108 bacterial proteomes.
    Bharanidharan D; Gautham N
    Arch Microbiol; 2005 Nov; 184(3):168-74. PubMed ID: 16205912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic determinants of protein folding thermodynamics in prokaryotic organisms.
    Bastolla U; Moya A; Viguera E; van Ham RC
    J Mol Biol; 2004 Nov; 343(5):1451-66. PubMed ID: 15491623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of proteomes: fundamental signatures and global trends in amino acid compositions.
    Tekaia F; Yeramian E
    BMC Genomics; 2006 Dec; 7():307. PubMed ID: 17147802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of the genomic GC content bias of prokaryotic organisms on the secondary structures of their proteins.
    Barceló-Antemate D; Fontove-Herrera F; Santos W; Merino E
    PLoS One; 2023; 18(5):e0285201. PubMed ID: 37141209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GC content-independent amino acid patterns in bacteria and archaea.
    Schmidt A; Rzanny M; Schmidt A; Hagen M; Schütze E; Kothe E
    J Basic Microbiol; 2012 Apr; 52(2):195-205. PubMed ID: 21780150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic GC level, optimal growth temperature, and genome size in prokaryotes.
    Musto H; Naya H; Zavala A; Romero H; Alvarez-Valín F; Bernardi G
    Biochem Biophys Res Commun; 2006 Aug; 347(1):1-3. PubMed ID: 16815305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-pass sequencing for microbial comparative genomics.
    Goo YA; Roach J; Glusman G; Baliga NS; Deutsch K; Pan M; Kennedy S; DasSarma S; Ng WV; Hood L
    BMC Genomics; 2004 Jan; 5(1):3. PubMed ID: 14718067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Comparative analysis of internal repeating segments in proteins of species from the three kingdoms of life].
    Chen H; Zhu S; Chen LB
    Yi Chuan Xue Bao; 2005 Mar; 32(3):315-21. PubMed ID: 15931794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.