These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 16762445)
61. Mitogenomes of Accipitriformes and Cathartiformes Were Subjected to Ancestral and Recent Duplications Followed by Gradual Degeneration. Urantówka AD; Kroczak A; Strzała T; Zaniewicz G; Kurkowski M; Mackiewicz P Genome Biol Evol; 2021 Sep; 13(9):. PubMed ID: 34432018 [TBL] [Abstract][Full Text] [Related]
62. Insight into the Phylogenetic Relationships among Three Subfamilies within Heptageniidae (Insecta: Ephemeroptera) along with Low-Temperature Selection Pressure Analyses Using Mitogenomes. Xu XD; Guan JY; Zhang ZY; Cao YR; Cai YY; Storey KB; Yu DN; Zhang JY Insects; 2021 Jul; 12(7):. PubMed ID: 34357316 [TBL] [Abstract][Full Text] [Related]
64. Whole-genome microsynteny-based phylogeny of angiosperms. Zhao T; Zwaenepoel A; Xue JY; Kao SM; Li Z; Schranz ME; Van de Peer Y Nat Commun; 2021 Jun; 12(1):3498. PubMed ID: 34108452 [TBL] [Abstract][Full Text] [Related]
65. Two Complete Mitochondrial Genomes From Leuctridae (Plecoptera: Nemouroidea): Implications for the Phylogenetic Relationships Among Stoneflies. Cao J; Wang Y; Guo X; Wang G; Li W; Murányi D J Insect Sci; 2021 Jan; 21(1):. PubMed ID: 33590866 [TBL] [Abstract][Full Text] [Related]
66. Not Frozen in the Ice: Large and Dynamic Rearrangements in the Mitochondrial Genomes of the Antarctic Fish. Papetti C; Babbucci M; Dettai A; Basso A; Lucassen M; Harms L; Bonillo C; Heindler FM; Patarnello T; Negrisolo E Genome Biol Evol; 2021 Mar; 13(3):. PubMed ID: 33570582 [TBL] [Abstract][Full Text] [Related]
67. Characterization and Phylogenetic Analysis of the Complete Mitochondrial Genome of Laelia suffusa (Lepidoptera: Erebidae, Lymantriinae). Li J; Lv Q; Zhang XM; Han HL; Zhang AB J Insect Sci; 2021 Jan; 21(1):. PubMed ID: 33428744 [TBL] [Abstract][Full Text] [Related]
68. Characteristics of the mitochondrial genome of Jiang L; Zhang M; Deng L; Xu Z; Shi H; Jia X; Lai Z; Ruan Q; Chen W Ecol Evol; 2020 Dec; 10(23):12817-12837. PubMed ID: 33304496 [TBL] [Abstract][Full Text] [Related]
69. New view on the organization and evolution of Palaeognathae mitogenomes poses the question on the ancestral gene rearrangement in Aves. Urantówka AD; Kroczak A; Mackiewicz P BMC Genomics; 2020 Dec; 21(1):874. PubMed ID: 33287726 [TBL] [Abstract][Full Text] [Related]
70. Six complete mitochondrial genomes of mayflies from three genera of Ephemerellidae (Insecta: Ephemeroptera) with inversion and translocation of Xu XD; Jia YY; Cao SS; Zhang ZY; Storey KB; Yu DN; Zhang JY PeerJ; 2020; 8():e9740. PubMed ID: 32879803 [TBL] [Abstract][Full Text] [Related]
71. Phylogenetic Reconstruction Based on Synteny Block and Gene Adjacencies. Drillon G; Champeimont R; Oteri F; Fischer G; Carbone A Mol Biol Evol; 2020 Sep; 37(9):2747-2762. PubMed ID: 32384156 [TBL] [Abstract][Full Text] [Related]
72. Complete Mitogenomic Structure and Phylogenetic Implications of the Genus Zhou N; Dong Y; Qiao P; Yang Z Insects; 2020 Apr; 11(4):. PubMed ID: 32272743 [TBL] [Abstract][Full Text] [Related]
73. Mitochondrial Genomes of Two Zhang D; Zou H; Jakovlić I; Wu SG; Li M; Zhang J; Chen R; Li WX; Wang GT Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31466297 [TBL] [Abstract][Full Text] [Related]
74. Complete mitochondrial genome sequence of the Himalayan Griffon, Jiang L; Peng L; Tang M; You Z; Zhang M; West A; Ruan Q; Chen W; Merilä J Ecol Evol; 2019 Aug; 9(15):8813-8828. PubMed ID: 31410282 [TBL] [Abstract][Full Text] [Related]
75. Mitochondrial phylogeny and comparative mitogenomics of closely related pine moth pests (Lepidoptera: Qin J; Li J; Gao Q; Wilson JJ; Zhang AB PeerJ; 2019; 7():e7317. PubMed ID: 31372319 [TBL] [Abstract][Full Text] [Related]
77. Mitochondrial Architecture Rearrangements Produce Asymmetrical Nonadaptive Mutational Pressures That Subvert the Phylogenetic Reconstruction in Isopoda. Zhang D; Zou H; Hua CJ; Li WX; Mahboob S; Al-Ghanim KA; Al-Misned F; Jakovlić I; Wang GT Genome Biol Evol; 2019 Jul; 11(7):1797-1812. PubMed ID: 31192351 [TBL] [Abstract][Full Text] [Related]
78. Alternative characterizations of Fitch's xenology relation. Hellmuth M; Seemann CR J Math Biol; 2019 Aug; 79(3):969-986. PubMed ID: 31111195 [TBL] [Abstract][Full Text] [Related]
79. Choice of species affects phylogenetic stability of deep nodes: an empirical example in Terrabacteria. Superson AA; Phelan D; Dekovich A; Battistuzzi FU Bioinformatics; 2019 Oct; 35(19):3608-3616. PubMed ID: 30859177 [TBL] [Abstract][Full Text] [Related]
80. Embracing heterogeneity: coalescing the Tree of Life and the future of phylogenomics. Bravo GA; Antonelli A; Bacon CD; Bartoszek K; Blom MPK; Huynh S; Jones G; Knowles LL; Lamichhaney S; Marcussen T; Morlon H; Nakhleh LK; Oxelman B; Pfeil B; Schliep A; Wahlberg N; Werneck FP; Wiedenhoeft J; Willows-Munro S; Edwards SV PeerJ; 2019; 7():e6399. PubMed ID: 30783571 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]