BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 16762518)

  • 21. [Evaluation of binaural interaction by the characteristics of short-latency auditory evoked potentials in guinea pigs].
    Chudnovskiĭ SI; Moroz BS; Poliakov AN
    Neirofiziologiia; 1987; 19(5):579-86. PubMed ID: 3447058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The spatio-temporal brain dynamics of processing and integrating sound localization cues in humans.
    Tardif E; Murray MM; Meylan R; Spierer L; Clarke S
    Brain Res; 2006 May; 1092(1):161-76. PubMed ID: 16684510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaural time and level difference thresholds for acoustically presented signals in post-lingually deafened adults fitted with bilateral cochlear implants using CIS+ processing.
    Grantham DW; Ashmead DH; Ricketts TA; Haynes DS; Labadie RF
    Ear Hear; 2008 Jan; 29(1):33-44. PubMed ID: 18091105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
    Vollmer M
    J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuronal sensitivity to interaural time differences in the sound envelope in the auditory cortex of the pallid bat.
    Lohuis TD; Fuzessery ZM
    Hear Res; 2000 May; 143(1-2):43-57. PubMed ID: 10771183
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial processing in human auditory cortex: the effects of 3D, ITD, and ILD stimulation techniques.
    Palomäki KJ; Tiitinen H; Mäkinen V; May PJ; Alku P
    Brain Res Cogn Brain Res; 2005 Aug; 24(3):364-79. PubMed ID: 16099350
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural responses to simple simulated echoes in the auditory brain stem of the unanesthetized rabbit.
    Fitzpatrick DC; Kuwada S; Batra R; Trahiotis C
    J Neurophysiol; 1995 Dec; 74(6):2469-86. PubMed ID: 8747207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaural time coincidence detectors are present at birth: evidence from binaural interaction.
    Furst M; Bresloff I; Levine RA; Merlob PL; Attias JJ
    Hear Res; 2004 Jan; 187(1-2):63-72. PubMed ID: 14698088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Auditory evoked potentials in the detection of interaural intensity differences in children and adults.
    Wambacq IJ; Koehnke J; Shea-Miller KJ; Besing J; Toth V; Abubakr A
    Ear Hear; 2007 Jun; 28(3):320-31. PubMed ID: 17485981
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Origin of the binaural interaction component in wave P4 of the short-latency auditory evoked potentials in the cat: evaluation of serial depth recordings from the brainstem.
    Ungan P; Yagcioglu S
    Hear Res; 2002 May; 167(1-2):81-101. PubMed ID: 12117533
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Responses of low-frequency cells in the inferior colliculus to interaural time differences of clicks: excitatory and inhibitory components.
    Carney LH; Yin TC
    J Neurophysiol; 1989 Jul; 62(1):144-61. PubMed ID: 2754468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement of ITD coding within the initial stages of the auditory pathway.
    Pecka M; Siveke I; Grothe B; Lesica NA
    J Neurophysiol; 2010 Jan; 103(1):38-46. PubMed ID: 19846624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Processing of interaural time and intensity differences in the cat inferior colliculus.
    Caird D; Klinke R
    Exp Brain Res; 1987; 68(2):379-92. PubMed ID: 3691710
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Precise inhibition is essential for microsecond interaural time difference coding.
    Brand A; Behrend O; Marquardt T; McAlpine D; Grothe B
    Nature; 2002 May; 417(6888):543-7. PubMed ID: 12037566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aging effects on the binaural interaction component of the auditory brainstem response in the Mongolian gerbil: Effects of interaural time and level differences.
    Laumen G; Tollin DJ; Beutelmann R; Klump GM
    Hear Res; 2016 Jul; 337():46-58. PubMed ID: 27173973
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasticity in human directional hearing.
    Javer AR; Schwarz DW
    J Otolaryngol; 1995 Apr; 24(2):111-7. PubMed ID: 7602671
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of interaural time delays of noise stimuli on low-frequency cells in the cat's inferior colliculus. III. Evidence for cross-correlation.
    Yin TC; Chan JC; Carney LH
    J Neurophysiol; 1987 Sep; 58(3):562-83. PubMed ID: 3655883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coincidence detection by binaural neurons in the chick brain stem.
    Joseph AW; Hyson RL
    J Neurophysiol; 1993 Apr; 69(4):1197-211. PubMed ID: 8492159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Both frequency and interaural delay affect event-related potential responses to binaural gap.
    Huang Y; Kong L; Fan S; Wu X; Li L
    Neuroreport; 2008 Nov; 19(17):1673-8. PubMed ID: 18806687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaural frequency mismatch jointly modulates neural brainstem binaural interaction and behavioral interaural time difference sensitivity in humans.
    Sammeth CA; Brown AD; Greene NT; Tollin DJ
    Hear Res; 2023 Sep; 437():108839. PubMed ID: 37429100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.