These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 16762836)

  • 1. Dephosphorylation and genome-wide association of Maf1 with Pol III-transcribed genes during repression.
    Roberts DN; Wilson B; Huff JT; Stewart AJ; Cairns BR
    Mol Cell; 2006 Jun; 22(5):633-44. PubMed ID: 16762836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maf1 is involved in coupling carbon metabolism to RNA polymerase III transcription.
    Cieśla M; Towpik J; Graczyk D; Oficjalska-Pham D; Harismendy O; Suleau A; Balicki K; Conesa C; Lefebvre O; Boguta M
    Mol Cell Biol; 2007 Nov; 27(21):7693-702. PubMed ID: 17785443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maf1 phosphorylation is regulated through the action of prefoldin-like Bud27 on PP4 phosphatase in Saccharomyces cerevisiae.
    Gutiérrez-Santiago F; Martínez-Fernández V; Garrido-Godino AI; Colino-Palomino C; Clemente-Blanco A; Conesa C; Acker J; Navarro F
    Nucleic Acids Res; 2024 Jul; 52(12):7081-7095. PubMed ID: 38864693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of RNA polymerase III transcription involves SCH9-dependent and SCH9-independent branches of the target of rapamycin (TOR) pathway.
    Lee J; Moir RD; Willis IM
    J Biol Chem; 2009 May; 284(19):12604-8. PubMed ID: 19299514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycolytic flux in
    Szatkowska R; Garcia-Albornoz M; Roszkowska K; Holman SW; Furmanek E; Hubbard SJ; Beynon RJ; Adamczyk M
    Biochem J; 2019 Apr; 476(7):1053-1082. PubMed ID: 30885983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased histone acetylation is the signature of repressed state on the genes transcribed by RNA polymerase III.
    Arimbasseri AG; Shukla A; Pradhan AK; Bhargava P
    Gene; 2024 Jan; 893():147958. PubMed ID: 37923095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of yeast genome expression in response to defective RNA polymerase III-dependent transcription.
    Conesa C; Ruotolo R; Soularue P; Simms TA; Donze D; Sentenac A; Dieci G
    Mol Cell Biol; 2005 Oct; 25(19):8631-42. PubMed ID: 16166643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The MAF1 Phosphoregulatory Region Controls MAF1 Interaction with the RNA Polymerase III C34 Subunit and Transcriptional Repression in Plants.
    Oliveira Andrade M; Sforça ML; Batista FAH; Figueira ACM; Benedetti CE
    Plant Cell; 2020 Sep; 32(9):3019-3035. PubMed ID: 32641350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H2O2 activates the nuclear localization of Msn2 and Maf1 through thioredoxins in Saccharomyces cerevisiae.
    Boisnard S; Lagniel G; Garmendia-Torres C; Molin M; Boy-Marcotte E; Jacquet M; Toledano MB; Labarre J; Chédin S
    Eukaryot Cell; 2009 Sep; 8(9):1429-38. PubMed ID: 19581440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maf1 and Repression of RNA Polymerase III-Mediated Transcription Drive Adipocyte Differentiation.
    Chen CY; Lanz RB; Walkey CJ; Chang WH; Lu W; Johnson DL
    Cell Rep; 2018 Aug; 24(7):1852-1864. PubMed ID: 30110641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional suppression of a yeast maf1 deletion mutant by overdose of the N-terminal fragment of the largest RNA polymerase III subunit, C160.
    Łopusińska A; Farhat M; Cieśla M
    Gene; 2024 Dec; 930():148839. PubMed ID: 39142551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A small targeting domain in Ty1 integrase is sufficient to direct retrotransposon integration upstream of tRNA genes.
    Asif-Laidin A; Conesa C; Bonnet A; Grison C; Adhya I; Menouni R; Fayol H; Palmic N; Acker J; Lesage P
    EMBO J; 2020 Sep; 39(17):e104337. PubMed ID: 32677087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic programming a lean phenotype by deregulation of RNA polymerase III.
    Willis IM; Moir RD; Hernandez N
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12182-12187. PubMed ID: 30429315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA polymerase III transcription: its control by tumor suppressors and its deregulation by transforming agents.
    Brown TR; Scott PH; Stein T; Winter AG; White RJ
    Gene Expr; 2000; 9(1-2):15-28. PubMed ID: 11097422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locus-specific proteome decoding reveals Fpt1 as a chromatin-associated negative regulator of RNA polymerase III assembly.
    van Breugel ME; van Kruijsbergen I; Mittal C; Lieftink C; Brouwer I; van den Brand T; Kluin RJC; Hoekman L; Menezes RX; van Welsem T; Del Cortona A; Malik M; Beijersbergen RL; Lenstra TL; Verstrepen KJ; Pugh BF; van Leeuwen F
    Mol Cell; 2023 Dec; 83(23):4205-4221.e9. PubMed ID: 37995691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global analysis of transcriptionally engaged yeast RNA polymerase III reveals extended tRNA transcripts.
    Turowski TW; Leśniewska E; Delan-Forino C; Sayou C; Boguta M; Tollervey D
    Genome Res; 2016 Jul; 26(7):933-44. PubMed ID: 27206856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maf1 is an intrinsic suppressor against spontaneous neural repair and functional recovery after ischemic stroke.
    Tsang CK; Mi Q; Su G; Hwa Lee G; Xie X; D'Arcangelo G; Huang L; Steven Zheng XF
    J Adv Res; 2023 Sep; 51():73-90. PubMed ID: 36402285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maf1 controls retinal neuron number by both RNA Pol III- and Pol II-dependent mechanisms.
    Li Y; Xiao D; Chen H; Zheng XFS; Xiang M
    iScience; 2023 Dec; 26(12):108544. PubMed ID: 38089586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome and proteome changes triggered by overexpression of the transcriptional regulator Maf1 in the human pathogen Leishmania major.
    Rivera-Rivas LA; Florencio-Martínez LE; Romero-Meza G; Ortega-Ortiz RC; Manning-Cela RG; Carrero JC; Nepomuceno-Mejía T; Martínez-Calvillo S
    FASEB J; 2024 Aug; 38(16):e23888. PubMed ID: 39157983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting effects of whole-body and hepatocyte-specific deletion of the RNA polymerase III repressor
    Willemin G; Mange F; Praz V; Lorrain S; Cousin P; Roger C; Willis IM; Hernandez N
    Front Mol Biosci; 2023; 10():1297800. PubMed ID: 38143800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.