These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 16762855)

  • 41. Biomechanical comparison of methods of fixation of a midshaft osteotomy of the humerus.
    Henley MB; Monroe M; Tencer AF
    J Orthop Trauma; 1991; 5(1):14-20. PubMed ID: 2023038
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Compression osteosyntheses with the new AO universal nail. Functional principle and biomechanical prerequisites].
    Ritter G
    Unfallchirurg; 1991 Jan; 94(1):9-12. PubMed ID: 2028268
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of autocontrol micromotion intramedullary interlocking nail on fracture healing: an experimental study.
    Xu WZ; Guo XD; Zhao JC; Wang YJ
    Chin J Traumatol; 2006 Jun; 9(3):152-60. PubMed ID: 16723073
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Biomechanics of intramedullary nailing and its interlocking].
    Teubner E
    Zentralbl Chir; 1985; 110(19):1169-78. PubMed ID: 4072457
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Biomechanical analysis of a rare metal crack in an interlocking nail].
    Börner M; Mattheck C; Häberer B
    Unfallchirurg; 1985 May; 88(5):235-8. PubMed ID: 4012333
    [No Abstract]   [Full Text] [Related]  

  • 46. [Biomechanical analysis of the medullary bone nail and its locking].
    Teubner E
    Chirurg; 1985 Jul; 56(7):454-60. PubMed ID: 4042761
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Biomechanical studies on fracture fixation mechanism of the clover leaf medullary nail].
    Sasamoto N
    Nihon Seikeigeka Gakkai Zasshi; 1984 Feb; 58(2):171-88. PubMed ID: 6470536
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biomechanical comparison of bending and torsional properties in retrograde intramedullary nailing of humeral shaft fractures.
    Blum J; Machemer H; Baumgart F; Schlegel U; Wahl D; Rommens PM
    J Orthop Trauma; 1999; 13(5):344-50. PubMed ID: 10406701
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comment on Changulani et al. "Comparison of the use of the humerus intramedullary nail and dynamic compression plate for the management of diaphyseal fractures of the humerus. A randomised controlled study".
    Nagaraj C; Singh S; Singh B
    Int Orthop; 2008 Feb; 32(1):143. PubMed ID: 17724592
    [No Abstract]   [Full Text] [Related]  

  • 50. [Treatment of tibial fracture with interlocking intramedullary nail and tripus].
    Chai JW; Wu LS; Zhang CH; Xu L; Wei JJ; Wu SF
    Zhongguo Gu Shang; 2008 Feb; 21(2):118-20. PubMed ID: 19105475
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A biomechanical comparison of unlocked or locked reamed intramedullary nails in the treatment of mid-third simple transverse femoral shaft fractures.
    Wu CC; Tai CL
    Chang Gung Med J; 2006; 29(3):275-82. PubMed ID: 16924889
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Comparison between locked intramedullary nailing and plate osteosynthesis in the management of adult forearm fractures].
    Ozkaya U; Kiliç A; Ozdoğan U; Beng K; Kabukçuoğlu Y
    Acta Orthop Traumatol Turc; 2009; 43(1):14-20. PubMed ID: 19293611
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Biomechanical substantiation of stability of intraosseous osteosynthesis using titanium rods].
    Sukhanov GA
    Ortop Travmatol Protez; 1988 Dec; (12):19-22. PubMed ID: 3247113
    [No Abstract]   [Full Text] [Related]  

  • 54. [Development of static three dimensional screw-plate system and the biomechanic features thereof, a comparative study].
    Liang JY; Li KH; Liao QD; Zhu Y; Hu YH; Lei GH
    Zhonghua Yi Xue Za Zhi; 2009 Jan; 89(1):12-6. PubMed ID: 19489236
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanical behaviors of titanium, nickel-titanium, and stainless elastic intramedullary nail in fixation of tibial diaphyseal fractures.
    Chen YN; Lee PY
    Injury; 2023 Dec; 54(12):111097. PubMed ID: 37845172
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Micromotion at the fracture site after tibial nailing with four unreamed small-diameter nails--a biomechanical study using a distal tibia fracture model.
    Schüller M; Weninger P; Tschegg E; Jamek M; Redl H; Stanzl-Tschegg S
    J Trauma; 2009 May; 66(5):1391-7. PubMed ID: 19430244
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Low cost polymer intramedullary nails for fracture fixation: a biomechanical study in a porcine femur model.
    Lewis D; Lutton C; Wilson LJ; Crawford RW; Goss B
    Arch Orthop Trauma Surg; 2009 Jun; 129(6):817-22. PubMed ID: 19172285
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation and improvement of the efficiency of the Seidel humeral nail by numerical-experimental analysis of the bone-implant contact.
    Giudice F; La Rosa G; Russo T; Varsalona R
    Med Eng Phys; 2006 Sep; 28(7):682-93. PubMed ID: 16330237
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biomechanical comparison of a 2 and 3 proximal screw-configured antegrade piriformis intramedullary nail with a trochanteric reconstruction nail in an unstable subtrochanteric fracture model.
    Fissel B; Moed BR; Bledsoe JG
    J Orthop Trauma; 2008; 22(5):337-41. PubMed ID: 18448988
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Proximal humerus fractures: a comparative biomechanical analysis of intra and extramedullary implants.
    Füchtmeier B; May R; Hente R; Maghsudi M; Völk M; Hammer J; Nerlich M; Prantl L
    Arch Orthop Trauma Surg; 2007 Aug; 127(6):441-7. PubMed ID: 17457598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.