BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 16763021)

  • 21. 5-HT
    Fawley JA; Doyle MW; Andresen MC
    Brain Res; 2019 Oct; 1721():146346. PubMed ID: 31348913
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GABA(A) and GABA(B) receptors have opposite effects on synaptic glutamate release on the nucleus tractus solitarii neurons.
    Kang YH; Sun B; Park YS; Park CS; Jin YH
    Neuroscience; 2012 May; 209():39-46. PubMed ID: 22410341
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Allopregnanolone Effects on Transmission in the Brain Stem Solitary Tract Nucleus (NTS).
    Kim S; Kim SM; Oh B; Tak J; Yang E; Jin YH
    Neuroscience; 2018 May; 379():219-227. PubMed ID: 29604384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Frequency-dependent facilitation of synaptic throughput via postsynaptic NMDA receptors in the nucleus of the solitary tract.
    Zhao H; Peters JH; Zhu M; Page SJ; Ritter RC; Appleyard SM
    J Physiol; 2015 Jan; 593(1):111-25. PubMed ID: 25281729
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proopiomelanocortin neurons in nucleus tractus solitarius are activated by visceral afferents: regulation by cholecystokinin and opioids.
    Appleyard SM; Bailey TW; Doyle MW; Jin YH; Smart JL; Low MJ; Andresen MC
    J Neurosci; 2005 Apr; 25(14):3578-85. PubMed ID: 15814788
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitric oxide stimulates glutamatergic synaptic inputs to baroreceptor neurons through potentiation of Cav2.2-mediated Ca(2+) currents.
    Li DP; Chen SR
    Neurosci Lett; 2014 May; 567():57-62. PubMed ID: 24686191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of glutamatergic transmission by presynaptic N-methyl-D-aspartate mechanisms in second-order neurons of the rat nucleus tractus solitarius.
    Ohi Y; Kimura S; Haji A
    Neurosci Lett; 2015 Feb; 587():62-7. PubMed ID: 25528404
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ketamine-mediated afferent-specific presynaptic transmission blocks in low-threshold and sex-specific subpopulation of myelinated Ah-type baroreceptor neurons of rats.
    Wang LQ; Liu SZ; Wen X; Wu D; Yin L; Fan Y; Wang Y; Chen WR; Chen P; Liu Y; Lu XL; Sun HL; Shou W; Qiao GF; Li BY
    Oncotarget; 2015 Dec; 6(42):44108-22. PubMed ID: 26675761
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synaptic transmission in nucleus tractus solitarius is depressed by Group II and III but not Group I presynaptic metabotropic glutamate receptors in rats.
    Chen CY; Ling Eh EH; Horowitz JM; Bonham AC
    J Physiol; 2002 Feb; 538(Pt 3):773-86. PubMed ID: 11826164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Opioids inhibit visceral afferent activation of catecholamine neurons in the solitary tract nucleus.
    Cui RJ; Roberts BL; Zhao H; Andresen MC; Appleyard SM
    Neuroscience; 2012 Oct; 222():181-90. PubMed ID: 22796075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chronic sustained hypoxia enhances both evoked EPSCs and norepinephrine inhibition of glutamatergic afferent inputs in the nucleus of the solitary tract.
    Zhang W; Carreño FR; Cunningham JT; Mifflin SW
    J Neurosci; 2009 Mar; 29(10):3093-102. PubMed ID: 19279246
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Independent transmission of convergent visceral primary afferents in the solitary tract nucleus.
    McDougall SJ; Andresen MC
    J Neurophysiol; 2013 Jan; 109(2):507-17. PubMed ID: 23114206
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane and synaptic properties of nucleus tractus solitarius neurons projecting to the caudal ventrolateral medulla.
    Li DP; Yang Q
    Auton Neurosci; 2007 Oct; 136(1-2):69-81. PubMed ID: 17537680
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Presynaptic melanocortin-4 receptors on vagal afferent fibers modulate the excitability of rat nucleus tractus solitarius neurons.
    Wan S; Browning KN; Coleman FH; Sutton G; Zheng H; Butler A; Berthoud HR; Travagli RA
    J Neurosci; 2008 May; 28(19):4957-66. PubMed ID: 18463249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vasopressin indirectly excites dorsal raphe serotonin neurons through activation of the vasopressin1A receptor.
    Rood BD; Beck SG
    Neuroscience; 2014 Feb; 260():205-16. PubMed ID: 24345477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TRPV1 channels contribute to spontaneous glutamate release in nucleus tractus solitarii following chronic intermittent hypoxia.
    Kline DD; Wang S; Kunze DL
    J Neurophysiol; 2019 Mar; 121(3):881-892. PubMed ID: 30601692
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glutamate suppresses GABA release via presynaptic metabotropic glutamate receptors at baroreceptor neurones in rats.
    Chen CY; Bonham AC
    J Physiol; 2005 Jan; 562(Pt 2):535-51. PubMed ID: 15539399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vasopressin differentially modulates non-NMDA receptors in vasopressin and oxytocin neurons in the supraoptic nucleus.
    Hirasawa M; Mouginot D; Kozoriz MG; Kombian SB; Pittman QJ
    J Neurosci; 2003 May; 23(10):4270-7. PubMed ID: 12764115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterosynaptic crosstalk: GABA-glutamate metabotropic receptors interactively control glutamate release in solitary tract nucleus.
    Fernandes LG; Jin YH; Andresen MC
    Neuroscience; 2011 Feb; 174():1-9. PubMed ID: 21129447
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cranial afferent glutamate heterosynaptically modulates GABA release onto second-order neurons via distinctly segregated metabotropic glutamate receptors.
    Jin YH; Bailey TW; Andresen MC
    J Neurosci; 2004 Oct; 24(42):9332-40. PubMed ID: 15496669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.