BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 16763031)

  • 1. Distinct frequency-dependent regulation of nerve terminal excitability and synaptic transmission by IA and IK potassium channels revealed by Drosophila Shaker and Shab mutations.
    Ueda A; Wu CF
    J Neurosci; 2006 Jun; 26(23):6238-48. PubMed ID: 16763031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential contributions of Shaker and Shab K+ currents to neuronal firing patterns in Drosophila.
    Peng IF; Wu CF
    J Neurophysiol; 2007 Jan; 97(1):780-94. PubMed ID: 17079336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shal and shaker differential contribution to the K+ currents in the Drosophila mushroom body neurons.
    Gasque G; Labarca P; Reynaud E; Darszon A
    J Neurosci; 2005 Mar; 25(9):2348-58. PubMed ID: 15745961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of the frequency response of Shaker potassium channels by the quiver peptide suggesting a novel extracellular interaction mechanism.
    Wang JW; Wu CF
    J Neurogenet; 2010 Jul; 24(2):67-74. PubMed ID: 20429677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre- and post-synaptic mechanisms of synaptic strength homeostasis revealed by slowpoke and shaker K+ channel mutations in Drosophila.
    Lee J; Ueda A; Wu CF
    Neuroscience; 2008 Jul; 154(4):1283-96. PubMed ID: 18539401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonreciprocal homeostatic compensation in
    Kim EZ; Vienne J; Rosbash M; Griffith LC
    J Neurophysiol; 2017 Jun; 117(6):2125-2136. PubMed ID: 28298298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nerve terminal excitability and neuromuscular transmission in T(X;Y)V7 and Shaker mutants of Drosophila melanogaster.
    Mallart A; Angaut-Petit D; Bourret-Poulain C; Ferrús A
    J Neurogenet; 1991 Feb; 7(2-3):75-84. PubMed ID: 1851515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced transmitter release conferred by mutations in the slowpoke-encoded Ca2(+)-activated K+ channel gene of Drosophila.
    Warbington L; Hillman T; Adams C; Stern M
    Invert Neurosci; 1996 Jun; 2(1):51-60. PubMed ID: 9372155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presynaptic recordings from Drosophila: correlation of macroscopic and single-channel K+ currents.
    Martínez-Padrón M; Ferrús A
    J Neurosci; 1997 May; 17(10):3412-24. PubMed ID: 9133367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Archaerhodopsin voltage imaging: synaptic calcium and BK channels stabilize action potential repolarization at the Drosophila neuromuscular junction.
    Ford KJ; Davis GW
    J Neurosci; 2014 Oct; 34(44):14517-25. PubMed ID: 25355206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage sensitivity and gating charge in Shaker and Shab family potassium channels.
    Islas LD; Sigworth FJ
    J Gen Physiol; 1999 Nov; 114(5):723-42. PubMed ID: 10539976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robustness of neural coding in Drosophila photoreceptors in the absence of slow delayed rectifier K+ channels.
    Vähäsöyrinki M; Niven JE; Hardie RC; Weckström M; Juusola M
    J Neurosci; 2006 Mar; 26(10):2652-60. PubMed ID: 16525044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sub-cellular Ca2+ dynamics affected by voltage- and Ca2+-gated K+ channels: Regulation of the soma-growth cone disparity and the quiescent state in Drosophila neurons.
    Berke BA; Lee J; Peng IF; Wu CF
    Neuroscience; 2006 Oct; 142(3):629-44. PubMed ID: 16919393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential localization of voltage-gated potassium channels during
    Werner J; Arian J; Bernhardt I; Ryglewski S; Duch C
    J Neurogenet; 2020 Mar; 34(1):133-150. PubMed ID: 31997675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of rut adenylyl cyclase in the ensemble regulation of presynaptic terminal excitability: reduced synaptic strength and precision in a Drosophila memory mutant.
    Ueda A; Wu CF
    J Neurogenet; 2009; 23(1-2):185-99. PubMed ID: 19101836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct roles of Drosophila cacophony and Dmca1D Ca(2+) channels in synaptic homeostasis: genetic interactions with slowpoke Ca(2+) -activated BK channels in presynaptic excitability and postsynaptic response.
    Lee J; Ueda A; Wu CF
    Dev Neurobiol; 2014 Jan; 74(1):1-15. PubMed ID: 23959639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium and potassium currents influence Wallerian degeneration of injured Drosophila axons.
    Mishra B; Carson R; Hume RI; Collins CA
    J Neurosci; 2013 Nov; 33(48):18728-39. PubMed ID: 24285879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring membrane excitability in Drosophila expressing modified shaker constructs.
    Olsen DP; Keshishian H
    Cold Spring Harb Protoc; 2012 Feb; 2012(2):226-30. PubMed ID: 22301649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of repolarization of presynaptic motor terminals in Drosophila larvae using potassium-channel-blocking drugs and mutations.
    Gho M; Ganetzky B
    J Exp Biol; 1992 Sep; 170():93-111. PubMed ID: 1328458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered synaptic transmission in Drosophila hyperkinetic mutants.
    Stern M; Ganetzky B
    J Neurogenet; 1989 Aug; 5(4):215-28. PubMed ID: 2553904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.