BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 16763163)

  • 1. NADPH oxidase accounts for enhanced superoxide production and impaired endothelium-dependent smooth muscle relaxation in BKbeta1-/- mice.
    Oelze M; Warnholtz A; Faulhaber J; Wenzel P; Kleschyov AL; Coldewey M; Hink U; Pongs O; Fleming I; Wassmann S; Meinertz T; Ehmke H; Daiber A; Münzel T
    Arterioscler Thromb Vasc Biol; 2006 Aug; 26(8):1753-9. PubMed ID: 16763163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling.
    Mollnau H; Wendt M; Szöcs K; Lassègue B; Schulz E; Oelze M; Li H; Bodenschatz M; August M; Kleschyov AL; Tsilimingas N; Walter U; Förstermann U; Meinertz T; Griendling K; Münzel T
    Circ Res; 2002 Mar; 90(4):E58-65. PubMed ID: 11884382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes.
    Bitar MS; Wahid S; Mustafa S; Al-Saleh E; Dhaunsi GS; Al-Mulla F
    Eur J Pharmacol; 2005 Mar; 511(1):53-64. PubMed ID: 15777779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opposing roles of p47phox in basal versus angiotensin II-stimulated alterations in vascular O2- production, vascular tone, and mitogen-activated protein kinase activation.
    Li JM; Wheatcroft S; Fan LM; Kearney MT; Shah AM
    Circulation; 2004 Mar; 109(10):1307-13. PubMed ID: 14993144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of diabetes on the expression of the gp91phox homologues nox1 and nox4.
    Wendt MC; Daiber A; Kleschyov AL; Mülsch A; Sydow K; Schulz E; Chen K; Keaney JF; Lassègue B; Walter U; Griendling KK; Münzel T
    Free Radic Biol Med; 2005 Aug; 39(3):381-91. PubMed ID: 15993337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High pressure induces superoxide production in isolated arteries via protein kinase C-dependent activation of NAD(P)H oxidase.
    Ungvari Z; Csiszar A; Huang A; Kaminski PM; Wolin MS; Koller A
    Circulation; 2003 Sep; 108(10):1253-8. PubMed ID: 12874194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic association of nitric oxide downstream signaling molecules with endothelial caveolin-1 in rat aorta.
    Linder AE; McCluskey LP; Cole KR; Lanning KM; Webb RC
    J Pharmacol Exp Ther; 2005 Jul; 314(1):9-15. PubMed ID: 15778264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homocysteine stimulates NADPH oxidase-mediated superoxide production leading to endothelial dysfunction in rats.
    Edirimanne VE; Woo CW; Siow YL; Pierce GN; Xie JY; O K
    Can J Physiol Pharmacol; 2007 Dec; 85(12):1236-47. PubMed ID: 18066125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of protein kinase B/Akt and endothelial nitric oxide synthase mediates agmatine-induced endothelium-dependent relaxation.
    Santhanam AV; Viswanathan S; Dikshit M
    Eur J Pharmacol; 2007 Oct; 572(2-3):189-96. PubMed ID: 17640632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of vascular guanylyl cyclase by endothelial nitric oxide-dependent posttranslational modification.
    Oppermann M; Suvorava T; Freudenberger T; Dao VT; Fischer JW; Weber M; Kojda G
    Basic Res Cardiol; 2011 Jun; 106(4):539-49. PubMed ID: 21298436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide suppresses NADPH oxidase-dependent superoxide production by S-nitrosylation in human endothelial cells.
    Selemidis S; Dusting GJ; Peshavariya H; Kemp-Harper BK; Drummond GR
    Cardiovasc Res; 2007 Jul; 75(2):349-58. PubMed ID: 17568572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis.
    Laufs U; Wassmann S; Czech T; Münzel T; Eisenhauer M; Böhm M; Nickenig G
    Arterioscler Thromb Vasc Biol; 2005 Apr; 25(4):809-14. PubMed ID: 15692095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ramipril treatment protects against nitrate-induced oxidative stress in eNOS-/- mice: An implication of the NADPH oxidase pathway.
    Otto A; Fontaine J; Berkenboom G
    J Cardiovasc Pharmacol; 2006 Jul; 48(1):842-9. PubMed ID: 16891913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone morphogenic protein-4 induces hypertension in mice: role of noggin, vascular NADPH oxidases, and impaired vasorelaxation.
    Miriyala S; Gongora Nieto MC; Mingone C; Smith D; Dikalov S; Harrison DG; Jo H
    Circulation; 2006 Jun; 113(24):2818-25. PubMed ID: 16769910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased oxidative stress in the streptozotocin-induced diabetic apoE-deficient mouse: changes in expression of NADPH oxidase subunits and eNOS.
    Ding H; Hashem M; Triggle C
    Eur J Pharmacol; 2007 Apr; 561(1-3):121-8. PubMed ID: 17292348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor necrosis factor-alpha induces endothelial dysfunction in the prediabetic metabolic syndrome.
    Picchi A; Gao X; Belmadani S; Potter BJ; Focardi M; Chilian WM; Zhang C
    Circ Res; 2006 Jul; 99(1):69-77. PubMed ID: 16741160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic administration of genistein improves endothelial dysfunction in spontaneously hypertensive rats: involvement of eNOS, caveolin and calmodulin expression and NADPH oxidase activity.
    Vera R; Sánchez M; Galisteo M; Villar IC; Jimenez R; Zarzuelo A; Pérez-Vizcaíno F; Duarte J
    Clin Sci (Lond); 2007 Feb; 112(3):183-91. PubMed ID: 17007611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adventitial application of the NADPH oxidase inhibitor apocynin in vivo reduces neointima formation and endothelial dysfunction in rabbits.
    Chan EC; Datla SR; Dilley R; Hickey H; Drummond GR; Dusting GJ
    Cardiovasc Res; 2007 Sep; 75(4):710-8. PubMed ID: 17659266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pitavastatin restores vascular dysfunction in insulin-resistant state by inhibiting NAD(P)H oxidase activity and uncoupled endothelial nitric oxide synthase-dependent superoxide production.
    Shinozaki K; Nishio Y; Ayajiki K; Yoshida Y; Masada M; Kashiwagi A; Okamura T
    J Cardiovasc Pharmacol; 2007 Mar; 49(3):122-30. PubMed ID: 17414223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contribution of Nox4 to NADPH oxidase activity in mouse vascular smooth muscle.
    Ellmark SH; Dusting GJ; Fui MN; Guzzo-Pernell N; Drummond GR
    Cardiovasc Res; 2005 Feb; 65(2):495-504. PubMed ID: 15639489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.