These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 1676333)

  • 1. Effects of electrical and chemical stimulation of nucleus raphe magnus on responses to renal nerve stimulation.
    Knuepfer MM; Holt IL
    Brain Res; 1991 Mar; 543(2):327-34. PubMed ID: 1676333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscerosomatic neurons in the lower thoracic spinal cord of the cat: excitations and inhibitions evoked by splanchnic and somatic nerve volleys and by stimulation of brain stem nuclei.
    Tattersall JE; Cervero F; Lumb BM
    J Neurophysiol; 1986 Nov; 56(5):1411-23. PubMed ID: 3794775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of transmission and modulation of renal pain in cats; effect of nucleus raphe magnus stimulation on renal pain.
    Baik EJ; Jeong Y; Nam TS; Kim WK; Paik KS
    Yonsei Med J; 1995 Sep; 36(4):348-60. PubMed ID: 7483678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Medial medullary contribution to tonic descending inhibition of visceral input.
    Holt IL; Akeyson EW; Knuepfer MM
    Am J Physiol; 1991 Sep; 261(3 Pt 2):R727-37. PubMed ID: 1887961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal pathways mediating tonic, coeruleospinal, and raphe-spinal descending inhibition in the rat.
    Jones SL; Gebhart GF
    J Neurophysiol; 1987 Jul; 58(1):138-59. PubMed ID: 3612222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ascending inhibition of nociceptive neurons in the nucleus ventralis posterolateralis following conditioning stimulation of the nucleus raphe magnus.
    Koyama N; Yokota T
    Brain Res; 1993 Apr; 609(1-2):298-306. PubMed ID: 8099523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of cortical evoked potentials by stimulation of nucleus raphe magnus in rats.
    Follett KA; Gebhart GF
    J Neurophysiol; 1992 Apr; 67(4):820-8. PubMed ID: 1350307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical stimulation of cervical vagal afferents. I. Central relays for modulation of spinal nociceptive transmission.
    Ren K; Randich A; Gebhart GF
    J Neurophysiol; 1990 Oct; 64(4):1098-114. PubMed ID: 2175352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of spinal nociceptive neurons by excitation of cell bodies or fibers of passage at various brainstem sites in the cat.
    Sandkühler J; Helmchen C; Fu QG; Zimmermann M
    Neurosci Lett; 1988 Oct; 93(1):67-72. PubMed ID: 2905438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative comparison of inhibition in spinal cord of nociceptive information by stimulation in periaqueductal gray or nucleus raphe magnus of the cat.
    Gebhart GF; Sandkühler J; Thalhammer JG; Zimmermann M
    J Neurophysiol; 1983 Dec; 50(6):1433-45. PubMed ID: 6663336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parabrachial area and nucleus raphe magnus-induced modulation of nociceptive and nonnociceptive trigeminal subnucleus caudalis neurons activated by cutaneous or deep inputs.
    Chiang CY; Hu JW; Sessle BJ
    J Neurophysiol; 1994 Jun; 71(6):2430-45. PubMed ID: 7931526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal pathways mediating tonic or stimulation-produced descending inhibition from the periaqueductal gray or nucleus raphe magnus are separate in the cat.
    Sandkühler J; Fu QG; Zimmermann M
    J Neurophysiol; 1987 Aug; 58(2):327-41. PubMed ID: 3655871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological characteristics of the projection pathway from the medial preoptic to the nucleus raphe magnus of the rat and its modulation by the periaqueductal gray.
    Jiang M; Behbehani MM
    Pain; 2001 Nov; 94(2):139-147. PubMed ID: 11690727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological characterization of the projection from the nucleus raphe magnus to the lateral reticular nucleus: possible role of an excitatory amino acid in synaptic activation.
    Murphy AZ; Behbehani MM
    Brain Res; 1993 Mar; 606(1):68-78. PubMed ID: 8462005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of spinal nociceptive transmission from the midbrain, pons and medulla in the rat: activation of descending inhibition by morphine, glutamate and electrical stimulation.
    Jones SL; Gebhart GF
    Brain Res; 1988 Sep; 460(2):281-96. PubMed ID: 2852046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the influence of rostral and caudal raphe neurons on the adrenal secretion of catecholamines and on the release of adrenocorticotropin in the cat.
    Bereiter DA; Gann DS
    Pain; 1990 Jul; 42(1):81-91. PubMed ID: 1978277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that raphe-spinal neurons mediate opiate and midbrain stimulation-produced analgesias.
    Fields HL; Anderson SD
    Pain; 1978 Dec; 5(4):333-349. PubMed ID: 216966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for glutamic acid as a possible neurotransmitter between the mesencephalic nucleus cuneiformis and the medullary nucleus raphe magnus in the lightly anesthetized rat.
    Richter RC; Behbehani MM
    Brain Res; 1991 Mar; 544(2):279-86. PubMed ID: 1674895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of medullary raphe neurons to electrical and chemical activation of vagal afferent nerve fibers.
    Evans AR; Blair RW
    J Neurophysiol; 1993 Nov; 70(5):1950-61. PubMed ID: 8294964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raphe magnus inhibition of feline T1-T4 spinoreticular tract cell responses to visceral and somatic inputs.
    Chapman CD; Ammons WS; Foreman RD
    J Neurophysiol; 1985 Mar; 53(3):773-85. PubMed ID: 3981238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.