BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 1676333)

  • 1. Effects of electrical and chemical stimulation of nucleus raphe magnus on responses to renal nerve stimulation.
    Knuepfer MM; Holt IL
    Brain Res; 1991 Mar; 543(2):327-34. PubMed ID: 1676333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscerosomatic neurons in the lower thoracic spinal cord of the cat: excitations and inhibitions evoked by splanchnic and somatic nerve volleys and by stimulation of brain stem nuclei.
    Tattersall JE; Cervero F; Lumb BM
    J Neurophysiol; 1986 Nov; 56(5):1411-23. PubMed ID: 3794775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of transmission and modulation of renal pain in cats; effect of nucleus raphe magnus stimulation on renal pain.
    Baik EJ; Jeong Y; Nam TS; Kim WK; Paik KS
    Yonsei Med J; 1995 Sep; 36(4):348-60. PubMed ID: 7483678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Medial medullary contribution to tonic descending inhibition of visceral input.
    Holt IL; Akeyson EW; Knuepfer MM
    Am J Physiol; 1991 Sep; 261(3 Pt 2):R727-37. PubMed ID: 1887961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal pathways mediating tonic, coeruleospinal, and raphe-spinal descending inhibition in the rat.
    Jones SL; Gebhart GF
    J Neurophysiol; 1987 Jul; 58(1):138-59. PubMed ID: 3612222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ascending inhibition of nociceptive neurons in the nucleus ventralis posterolateralis following conditioning stimulation of the nucleus raphe magnus.
    Koyama N; Yokota T
    Brain Res; 1993 Apr; 609(1-2):298-306. PubMed ID: 8099523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of cortical evoked potentials by stimulation of nucleus raphe magnus in rats.
    Follett KA; Gebhart GF
    J Neurophysiol; 1992 Apr; 67(4):820-8. PubMed ID: 1350307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical stimulation of cervical vagal afferents. I. Central relays for modulation of spinal nociceptive transmission.
    Ren K; Randich A; Gebhart GF
    J Neurophysiol; 1990 Oct; 64(4):1098-114. PubMed ID: 2175352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of spinal nociceptive neurons by excitation of cell bodies or fibers of passage at various brainstem sites in the cat.
    Sandkühler J; Helmchen C; Fu QG; Zimmermann M
    Neurosci Lett; 1988 Oct; 93(1):67-72. PubMed ID: 2905438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative comparison of inhibition in spinal cord of nociceptive information by stimulation in periaqueductal gray or nucleus raphe magnus of the cat.
    Gebhart GF; Sandkühler J; Thalhammer JG; Zimmermann M
    J Neurophysiol; 1983 Dec; 50(6):1433-45. PubMed ID: 6663336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parabrachial area and nucleus raphe magnus-induced modulation of nociceptive and nonnociceptive trigeminal subnucleus caudalis neurons activated by cutaneous or deep inputs.
    Chiang CY; Hu JW; Sessle BJ
    J Neurophysiol; 1994 Jun; 71(6):2430-45. PubMed ID: 7931526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal pathways mediating tonic or stimulation-produced descending inhibition from the periaqueductal gray or nucleus raphe magnus are separate in the cat.
    Sandkühler J; Fu QG; Zimmermann M
    J Neurophysiol; 1987 Aug; 58(2):327-41. PubMed ID: 3655871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological characteristics of the projection pathway from the medial preoptic to the nucleus raphe magnus of the rat and its modulation by the periaqueductal gray.
    Jiang M; Behbehani MM
    Pain; 2001 Nov; 94(2):139-147. PubMed ID: 11690727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological characterization of the projection from the nucleus raphe magnus to the lateral reticular nucleus: possible role of an excitatory amino acid in synaptic activation.
    Murphy AZ; Behbehani MM
    Brain Res; 1993 Mar; 606(1):68-78. PubMed ID: 8462005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of spinal nociceptive transmission from the midbrain, pons and medulla in the rat: activation of descending inhibition by morphine, glutamate and electrical stimulation.
    Jones SL; Gebhart GF
    Brain Res; 1988 Sep; 460(2):281-96. PubMed ID: 2852046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the influence of rostral and caudal raphe neurons on the adrenal secretion of catecholamines and on the release of adrenocorticotropin in the cat.
    Bereiter DA; Gann DS
    Pain; 1990 Jul; 42(1):81-91. PubMed ID: 1978277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that raphe-spinal neurons mediate opiate and midbrain stimulation-produced analgesias.
    Fields HL; Anderson SD
    Pain; 1978 Dec; 5(4):333-349. PubMed ID: 216966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for glutamic acid as a possible neurotransmitter between the mesencephalic nucleus cuneiformis and the medullary nucleus raphe magnus in the lightly anesthetized rat.
    Richter RC; Behbehani MM
    Brain Res; 1991 Mar; 544(2):279-86. PubMed ID: 1674895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of medullary raphe neurons to electrical and chemical activation of vagal afferent nerve fibers.
    Evans AR; Blair RW
    J Neurophysiol; 1993 Nov; 70(5):1950-61. PubMed ID: 8294964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raphe magnus inhibition of feline T1-T4 spinoreticular tract cell responses to visceral and somatic inputs.
    Chapman CD; Ammons WS; Foreman RD
    J Neurophysiol; 1985 Mar; 53(3):773-85. PubMed ID: 3981238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.