These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 16763712)

  • 1. Electro-oxidation of formic acid catalyzed by FePt nanoparticles.
    Chen W; Kim J; Sun S; Chen S
    Phys Chem Chem Phys; 2006 Jun; 8(23):2779-86. PubMed ID: 16763712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid.
    Chen W; Kim J; Sun S; Chen S
    Langmuir; 2007 Oct; 23(22):11303-10. PubMed ID: 17892313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [In situ FTIR spectroscopy studies of HCOOH oxidation on surface alloy electrocatalysts].
    Chen SP; Huang T; Zhen CH; Zhang Q; Gong H; Sun SG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2003 Apr; 23(2):273-5. PubMed ID: 12961868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and formic acid oxidation studies of PtAu nanoparticles.
    Saipanya S; Srisombat L; Wongtap P; Sarakonsri T
    J Nanosci Nanotechnol; 2014 Oct; 14(10):8053-5. PubMed ID: 25942921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes.
    Selvaraj V; Grace AN; Alagar M
    J Colloid Interface Sci; 2009 May; 333(1):254-62. PubMed ID: 19243782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrocatalytic mechanism and kinetics of SOMs oxidation on ordered PtPb and PtBi intermetallic compounds: DEMS and FTIRS study.
    Wang H; Alden L; Disalvo FJ; Abruña HD
    Phys Chem Chem Phys; 2008 Jul; 10(25):3739-51. PubMed ID: 18563235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic activity and poisoning rate for HCOOH oxidation on platinum stepped surfaces.
    Grozovski V; Climent V; Herrero E; Feliu JM
    Phys Chem Chem Phys; 2010 Aug; 12(31):8822-31. PubMed ID: 20539876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt.
    Neurock M; Janik M; Wieckowski A
    Faraday Discuss; 2008; 140():363-78; discussion 417-37. PubMed ID: 19213327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoporous bimetallic Pt-Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid.
    Zhang Z; Wang Y; Wang X
    Nanoscale; 2011 Apr; 3(4):1663-74. PubMed ID: 21311802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of acid-base equilibrium in electrocatalytic oxidation of formic acid on platinum.
    Joo J; Uchida T; Cuesta A; Koper MT; Osawa M
    J Am Chem Soc; 2013 Jul; 135(27):9991-4. PubMed ID: 23808962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrodeposition of platinum nanoparticles in a room-temperature ionic liquid.
    Zhang D; Chang WC; Okajima T; Ohsaka T
    Langmuir; 2011 Dec; 27(23):14662-8. PubMed ID: 21995596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Au-supported Pt-Au mixed atomic monolayer electrocatalyst with ultrahigh specific activity for oxidation of formic acid in acidic solution.
    Huang Z; Liu Y; Xie F; Fu Y; He Y; Ma M; Xie Q; Yao S
    Chem Commun (Camb); 2012 Dec; 48(99):12106-8. PubMed ID: 23138106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vanadium oxide decorated carbon nanotubes as a promising support of Pt nanoparticles for methanol electro-oxidation reaction.
    Nouralishahi A; Khodadadi AA; Rashidi AM; Mortazavi Y
    J Colloid Interface Sci; 2013 Mar; 393():291-9. PubMed ID: 23201063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CO oxidation on Pt-modified Rh(111) electrodes.
    Housmans TH; Feliu JM; Gómez R; Koper MT
    Chemphyschem; 2005 Aug; 6(8):1522-9. PubMed ID: 16035023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Online monitoring of electrocatalytic reactions of alcohols at platinum and gold electrodes in acidic, neutral and alkaline media by capillary electrophoresis with contactless conductivity detection (EC-CE-C
    Ferreira Santos MS; Silva Lopes F; Gutz IGR
    Electrophoresis; 2017 Nov; 38(21):2725-2732. PubMed ID: 28485016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical impedance spectroscopy of mixed conductors under a chemical potential gradient: a case study of Pt|SDC|BSCF.
    Lai W; Haile SM
    Phys Chem Chem Phys; 2008 Feb; 10(6):865-83. PubMed ID: 18231690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amperometric sensor for hydrogen peroxide based on direct electron transfer of spinach ferredoxin on Au electrode.
    Yagati AK; Lee T; Min J; Choi JW
    Bioelectrochemistry; 2011 Feb; 80(2):169-74. PubMed ID: 20851693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CoPt nanoparticles and their catalytic properties in electrooxidation of CO and CH(3)OH studied by in situ FTIRS.
    Chen QS; Sun SG; Zhou ZY; Chen YX; Deng SB
    Phys Chem Chem Phys; 2008 Jul; 10(25):3645-54. PubMed ID: 18563225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of electroactive layer-by-layer films of myoglobin with gold nanoparticles of different sizes.
    Zhang H; Lu H; Hu N
    J Phys Chem B; 2006 Feb; 110(5):2171-9. PubMed ID: 16471801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanning electrochemical microscopy: surface interrogation of adsorbed hydrogen and the open circuit catalytic decomposition of formic acid at platinum.
    Rodríguez-López J; Bard AJ
    J Am Chem Soc; 2010 Apr; 132(14):5121-9. PubMed ID: 20225806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.