BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 1676419)

  • 1. Regulation by synapsin I and Ca(2+)-calmodulin-dependent protein kinase II of the transmitter release in squid giant synapse.
    Llinás R; Gruner JA; Sugimori M; McGuinness TL; Greengard P
    J Physiol; 1991 May; 436():257-82. PubMed ID: 1676419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of synapsin I and calcium/calmodulin-dependent protein kinase II on spontaneous neurotransmitter release in the squid giant synapse.
    Lin JW; Sugimori M; Llinás RR; McGuinness TL; Greengard P
    Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8257-61. PubMed ID: 1978321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse.
    Llinás R; McGuinness TL; Leonard CS; Sugimori M; Greengard P
    Proc Natl Acad Sci U S A; 1985 May; 82(9):3035-9. PubMed ID: 2859595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium released by photolysis of DM-nitrophen stimulates transmitter release at squid giant synapse.
    Delaney KR; Zucker RS
    J Physiol; 1990 Jul; 426():473-98. PubMed ID: 1977904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divalent cations differentially support transmitter release at the squid giant synapse.
    Augustine GJ; Eckert R
    J Physiol; 1984 Jan; 346():257-71. PubMed ID: 6142104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the C2A domain of synaptotagmin in transmitter release as determined by specific antibody injection into the squid giant synapse preterminal.
    Mikoshiba K; Fukuda M; Moreira JE; Lewis FM; Sugimori M; Niinobe M; Llinás R
    Proc Natl Acad Sci U S A; 1995 Nov; 92(23):10703-7. PubMed ID: 7479868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular injection of synapsin I induces neurotransmitter release in C1 neurons of Helix pomatia contacting a wrong target.
    Fiumara F; Onofri F; Benfenati F; Montarolo PG; Ghirardi M
    Neuroscience; 2001; 104(1):271-80. PubMed ID: 11311549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tonically active protein kinase A regulates neurotransmitter release at the squid giant synapse.
    Hilfiker S; Czernik AJ; Greengard P; Augustine GJ
    J Physiol; 2001 Feb; 531(Pt 1):141-6. PubMed ID: 11179398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium entry and transmitter release at voltage-clamped nerve terminals of squid.
    Augustine GJ; Charlton MP; Smith SJ
    J Physiol; 1985 Oct; 367():163-81. PubMed ID: 2865362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation-dependent inhibition by synapsin I of organelle movement in squid axoplasm.
    McGuinness TL; Brady ST; Gruner JA; Sugimori M; Llinas R; Greengard P
    J Neurosci; 1989 Dec; 9(12):4138-49. PubMed ID: 2512374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presynaptic calcium diffusion and the time courses of transmitter release and synaptic facilitation at the squid giant synapse.
    Zucker RS; Stockbridge N
    J Neurosci; 1983 Jun; 3(6):1263-9. PubMed ID: 6133920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+/calmodulin-dependent protein kinase II phosphorylation of the presynaptic protein synapsin I is persistently increased during long-term potentiation.
    Nayak AS; Moore CI; Browning MD
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15451-6. PubMed ID: 8986832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term treatment with S-adenosylmethionine induces changes in presynaptic CaM kinase II and synapsin I.
    Consogno E; Tiraboschi E; Iuliano E; Gennarelli M; Racagni G; Popoli M
    Biol Psychiatry; 2001 Sep; 50(5):337-44. PubMed ID: 11543736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presynaptic potentials and facilitation of transmitter release in the squid giant synapse.
    Charlton MP; Bittner GD
    J Gen Physiol; 1978 Oct; 72(4):487-511. PubMed ID: 31412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium currents, transmitter release and facilitation of release at voltage-clamped crayfish nerve terminals.
    Wright SN; Brodwick MS; Bittner GD
    J Physiol; 1996 Oct; 496 ( Pt 2)(Pt 2):363-78. PubMed ID: 8910222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The inositol high-polyphosphate series blocks synaptic transmission by preventing vesicular fusion: a squid giant synapse study.
    Llinás R; Sugimori M; Lang EJ; Morita M; Fukuda M; Niinobe M; Mikoshiba K
    Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12990-3. PubMed ID: 7809161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitors of calcium buffering depress evoked transmitter release at the squid giant synapse.
    Adams DJ; Takeda K; Umbach JA
    J Physiol; 1985 Dec; 369():145-59. PubMed ID: 2419546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the distribution of calcium calmodulin-dependent protein kinase II at the presynaptic bouton after depolarization.
    Tao-Cheng JH; Dosemeci A; Winters CA; Reese TS
    Brain Cell Biol; 2006 Jun; 35(2-3):117-24. PubMed ID: 17957478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Norepinephrine and isoproterenol increase the phosphorylation of synapsin I and synapsin II in dentate slices of young but not aged Fisher 344 rats.
    Parfitt KD; Hoffer BJ; Browning MD
    Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2361-5. PubMed ID: 1900942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of synaptic transmitter release by repetitive postsynaptic action potentials.
    Weight FF; Erulkar SD
    Science; 1976 Sep; 193(4257):1023-5. PubMed ID: 7839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.