These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16764470)

  • 21. Intestinal Fish Cell Barrier Model to Assess Transfer of Organic Chemicals in Vitro: An Experimental and Computational Study.
    Schug H; Maner J; Begnaud F; Berthaud F; Gimeno S; Schirmer K; Županič A
    Environ Sci Technol; 2019 Oct; 53(20):12062-12070. PubMed ID: 31553583
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessing the bioaccumulation potential of ionizable organic compounds: Current knowledge and research priorities.
    Armitage JM; Erickson RJ; Luckenbach T; Ng CA; Prosser RS; Arnot JA; Schirmer K; Nichols JW
    Environ Toxicol Chem; 2017 Apr; 36(4):882-897. PubMed ID: 27992066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An enriched stable-isotope approach to determine the gill-zinc binding properties of juvenile rainbow trout (Oncorhynchus mykiss) during acute zinc exposures in hard and soft waters.
    Todd AS; Brinkman S; Wolf RE; Lamothe PJ; Smith KS; Ranville JE
    Environ Toxicol Chem; 2009 Jun; 28(6):1233-43. PubMed ID: 19132811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The changes to apical silver membrane uptake, and basolateral membrane silver export in the gills of rainbow trout (Oncorhynchus mykiss) on exposure to sublethal silver concentrations.
    Bury NR
    Aquat Toxicol; 2005 Mar; 72(1-2):135-45. PubMed ID: 15748752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A physiologically based toxicokinetic model for dermal absorption of organic chemicals by fish.
    Nichols JW; McKim JM; Lien GJ; Hoffman AD; Bertelsen SL; Elonen CM
    Fundam Appl Toxicol; 1996 Jun; 31(2):229-42. PubMed ID: 8789789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel Approach for Characterizing pH-Dependent Uptake of Ionizable Chemicals in Aquatic Organisms.
    Karlsson MV; Carter LJ; Agatz A; Boxall ABA
    Environ Sci Technol; 2017 Jun; 51(12):6965-6971. PubMed ID: 28553715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A physiologically based toxicokinetic model for the uptake and disposition of waterborne organic chemicals in fish.
    Nichols JW; McKim JM; Andersen ME; Gargas ML; Clewell HJ; Erickson RJ
    Toxicol Appl Pharmacol; 1990 Dec; 106(3):433-47. PubMed ID: 2260091
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Different mechanisms of Na
    Zimmer AM; Wilson JM; Wright PA; Hiroi J; Wood CM
    J Exp Biol; 2017 Mar; 220(Pt 5):775-786. PubMed ID: 27965271
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The physiological basis for altered Na+ and Cl- movements across the gills of rainbow trout (Oncorhynchus mykiss) in alkaline (pH = 9.5) water.
    Wilkie MP; Laurent P; Wood CM
    Physiol Biochem Zool; 1999; 72(3):360-8. PubMed ID: 10222330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of chronic Cd exposure via the diet or water on internal organ-specific distribution and subsequent gill Cd uptake kinetics in juvenile rainbow trout (Oncorhynchus mykiss).
    Szebedinszky C; McGeer JC; McDonald DG; Wood CM
    Environ Toxicol Chem; 2001 Mar; 20(3):597-607. PubMed ID: 11349862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Is Cl- protection against silver toxicity due to chemical speciation?
    Bielmyer GK; Brix KV; Grosell M
    Aquat Toxicol; 2008 Apr; 87(2):81-7. PubMed ID: 18304659
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A matter of potential concern: natural organic matter alters the electrical properties of fish gills.
    Galvez F; Donini A; Playle RC; Smith DS; O'Donnell MJ; Wood CM
    Environ Sci Technol; 2008 Dec; 42(24):9385-90. PubMed ID: 19174920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards an improved understanding of processes controlling absorption efficiency and biomagnification of organic chemicals by fish.
    Xiao R; Arnot JA; MacLeod M
    Chemosphere; 2015 Nov; 138():89-95. PubMed ID: 26047570
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic analyses of waterborne Ca and Cd transport and their interactions in the gills of rainbow trout (Oncorhynchus mykiss) and yellow perch (Perca flavescens), two species differing greatly in acute waterborne Cd sensitivity.
    Niyogi S; Wood CM
    J Comp Physiol B; 2004 Apr; 174(3):243-53. PubMed ID: 14740250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of natural organic matter source on reducing metal toxicity to rainbow trout (Oncorhynchus mykiss) and on metal binding to their gills.
    Richards JG; Curtis PJ; Burnison BK; Playle RC
    Environ Toxicol Chem; 2001 Jun; 20(6):1159-66. PubMed ID: 11392125
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sodium-dependent copper uptake across epithelia: a review of rationale with experimental evidence from gill and intestine.
    Handy RD; Eddy FB; Baines H
    Biochim Biophys Acta; 2002 Nov; 1566(1-2):104-15. PubMed ID: 12421542
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of copper on CYP1A activity and epithelial barrier properties in the rainbow trout gill.
    Jönsson ME; Carlsson C; Smith RW; Pärt P
    Aquat Toxicol; 2006 Aug; 79(1):78-86. PubMed ID: 16814405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Copper levels and changes in pH induce oxidative stress in the tissue of curimbata (Prochilodus lineatus).
    Carvalho Cdos S; Bernusso VA; Fernandes MN
    Aquat Toxicol; 2015 Oct; 167():220-7. PubMed ID: 26361357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of total Zn and Zn isotope ratios by quadrupole ICP-MS for evaluation of Zn uptake in gills of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss).
    Wolf RE; Todd AS; Brinkman S; Lamothe PJ; Smith KS; Ranville JF
    Talanta; 2009 Dec; 80(2):676-84. PubMed ID: 19836537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The osmorespiratory compromise in rainbow trout (Oncorhynchus mykiss): The effects of fish size, hypoxia, temperature and strenuous exercise on gill diffusive water fluxes and sodium net loss rates.
    Onukwufor JO; Wood CM
    Comp Biochem Physiol A Mol Integr Physiol; 2018 May; 219-220():10-18. PubMed ID: 29454143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.