BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 16764818)

  • 1. Regulation of contraction kinetics in skinned skeletal muscle fibers by calcium and troponin C.
    Luo Y; Rall JA
    Arch Biochem Biophys; 2006 Dec; 456(2):119-26. PubMed ID: 16764818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determinants of relaxation rate in rabbit skinned skeletal muscle fibres.
    Luo Y; Davis JP; Smillie LB; Rall JA
    J Physiol; 2002 Dec; 545(3):887-901. PubMed ID: 12482894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myofibrillar determinants of rate of relaxation in skinned skeletal muscle fibers.
    Luo Y; Davis JP; Tikunova SB; Smillie LB; Rall JA
    Adv Exp Med Biol; 2003; 538():573-81; discussion 581-2. PubMed ID: 15098700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of oscillatory contraction in insect flight muscle by troponin.
    Krzic U; Rybin V; Leonard KR; Linke WA; Bullard B
    J Mol Biol; 2010 Mar; 397(1):110-8. PubMed ID: 20100491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Ca2+ binding properties of troponin C on rate of skeletal muscle force redevelopment.
    Lee RS; Tikunova SB; Kline KP; Zot HG; Hasbun JE; Minh NV; Swartz DR; Rall JA; Davis JP
    Am J Physiol Cell Physiol; 2010 Nov; 299(5):C1091-9. PubMed ID: 20702687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the Ca(2+) regulatory sites of skeletal troponin C in modulating muscle fibre reactivity to the Ca(2+) sensitizer bepridil.
    Kischel P; Bastide B; Potter JD; Mounier Y
    Br J Pharmacol; 2000 Dec; 131(7):1496-502. PubMed ID: 11090126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thin-filament regulation of force redevelopment kinetics in rabbit skeletal muscle fibres.
    Moreno-Gonzalez A; Gillis TE; Rivera AJ; Chase PB; Martyn DA; Regnier M
    J Physiol; 2007 Mar; 579(Pt 2):313-26. PubMed ID: 17204497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of length on force and activation-dependent changes in troponin c structure in skinned cardiac and fast skeletal muscle.
    Martyn DA; Gordon AM
    Biophys J; 2001 Jun; 80(6):2798-808. PubMed ID: 11371454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of troponin C in modulating the Ca2+ sensitivity of mammalian skinned cardiac and skeletal muscle fibres.
    Palmer S; Kentish JC
    J Physiol; 1994 Oct; 480 ( Pt 1)(Pt 1):45-60. PubMed ID: 7853225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of the interactions between troponin C (TnC) and troponin I (TnI) binding peptides: evidence for separate binding sites for the 'structural' N-terminus and the 'regulatory' C-terminus of TnI on TnC.
    Tripet B; De Crescenzo G; Grothe S; O'Connor-McCourt M; Hodges RS
    J Mol Recognit; 2003; 16(1):37-53. PubMed ID: 12557238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The off rate of Ca(2+) from troponin C is regulated by force-generating cross bridges in skeletal muscle.
    Wang Y; Kerrick WG
    J Appl Physiol (1985); 2002 Jun; 92(6):2409-18. PubMed ID: 12015355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relaxation kinetics following sudden Ca(2+) reduction in single myofibrils from skeletal muscle.
    Tesi C; Piroddi N; Colomo F; Poggesi C
    Biophys J; 2002 Oct; 83(4):2142-51. PubMed ID: 12324431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and functional behavior of troponin C in soleus muscle fibers of rat after hindlimb unloading.
    Kischel P; Bastide B; Stevens L; Mounier Y
    J Appl Physiol (1985); 2001 Mar; 90(3):1095-101. PubMed ID: 11181625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca(2+) exchange with troponin C and cardiac muscle dynamics.
    Davis JP; Tikunova SB
    Cardiovasc Res; 2008 Mar; 77(4):619-26. PubMed ID: 18079104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac troponin C (TnC) and a site I skeletal TnC mutant alter Ca2+ versus crossbridge contribution to force in rabbit skeletal fibres.
    Moreno-Gonzalez A; Fredlund J; Regnier M
    J Physiol; 2005 Feb; 562(Pt 3):873-84. PubMed ID: 15611027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of contractile activation in voltage clamped frog skeletal muscle fibers.
    Szentesi P; Papp Z; Szücs G; Kovács L; Csernoch L
    Biophys J; 1997 Oct; 73(4):1999-2011. PubMed ID: 9336195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative mechanisms in the activation dependence of the rate of force development in rabbit skinned skeletal muscle fibers.
    Fitzsimons DP; Patel JR; Campbell KS; Moss RL
    J Gen Physiol; 2001 Feb; 117(2):133-48. PubMed ID: 11158166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perhexiline increases calcium-activated force in skinned psoas fibres by raising calcium affinity of troponin-C.
    Morano I; Isac M; Bletz C; Wojciechowski R; Rüegg JC
    Biomed Biochim Acta; 1989; 48(5-6):S329-34. PubMed ID: 2757606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of troponin I isoform switching in determining the pH sensitivity of Ca(2+) regulation in developing rabbit cardiac muscle.
    Morimoto S; Goto T
    Biochem Biophys Res Commun; 2000 Jan; 267(3):912-7. PubMed ID: 10673390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of troponin C isoforms on pH sensitivity of contraction in mammalian fast and slow skeletal muscle fibres.
    Metzger JM
    J Physiol; 1996 Apr; 492 ( Pt 1)(Pt 1):163-72. PubMed ID: 8730592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.