These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 16765626)
1. A 6-bp deletion at the splice donor site of the first intron resulted in aberrant splicing using a cryptic splice site within exon 1 in a patient with succinyl-CoA: 3-Ketoacid CoA transferase (SCOT) deficiency. Fukao T; Sakurai S; Rolland MO; Zabot MT; Schulze A; Yamada K; Kondo N Mol Genet Metab; 2006 Nov; 89(3):280-2. PubMed ID: 16765626 [TBL] [Abstract][Full Text] [Related]
2. Single-base substitution at the last nucleotide of exon 6 (c.671G>A), resulting in the skipping of exon 6, and exons 6 and 7 in human succinyl-CoA:3-ketoacid CoA transferase (SCOT) gene. Yamada K; Fukao T; Zhang G; Sakurai S; Ruiter JP; Wanders RJ; Kondo N Mol Genet Metab; 2007 Mar; 90(3):291-7. PubMed ID: 17169596 [TBL] [Abstract][Full Text] [Related]
3. Succinyl-CoA:3-ketoacid CoA transferase (SCOT): cloning of the human SCOT gene, tertiary structural modeling of the human SCOT monomer, and characterization of three pathogenic mutations. Fukao T; Mitchell GA; Song XQ; Nakamura H; Kassovska-Bratinova S; Orii KE; Wraith JE; Besley G; Wanders RJ; Niezen-Koning KE; Berry GT; Palmieri M; Kondo N Genomics; 2000 Sep; 68(2):144-51. PubMed ID: 10964512 [TBL] [Abstract][Full Text] [Related]
4. A novel single-base substitution (380C>T) that activates a 5-base downstream cryptic splice-acceptor site within exon 5 in almost all transcripts in the human mitochondrial acetoacetyl-CoA thiolase gene. Nakamura K; Fukao T; Perez-Cerda C; Luque C; Song XQ; Naiki Y; Kohno Y; Ugarte M; Kondo N Mol Genet Metab; 2001 Feb; 72(2):115-21. PubMed ID: 11161837 [TBL] [Abstract][Full Text] [Related]
5. Molecular basis of two-exon skipping (exons 12 and 13) by c.1248+5g>a in OXCT1 gene: study on intermediates of OXCT1 transcripts in fibroblasts. Hori T; Fukao T; Murase K; Sakaguchi N; Harding CO; Kondo N Hum Mutat; 2013 Mar; 34(3):473-80. PubMed ID: 23281106 [TBL] [Abstract][Full Text] [Related]
6. Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency: two pathogenic mutations, V133E and C456F, in Japanese siblings. Song XQ; Fukao T; Watanabe H; Shintaku H; Hirayama K; Kassovska-Bratinova S; Kondo N; Mitchell GA Hum Mutat; 1998; 12(2):83-8. PubMed ID: 9671268 [TBL] [Abstract][Full Text] [Related]
7. Disease-causing mutations improving the branch site and polypyrimidine tract: pseudoexon activation of LINE-2 and antisense Alu lacking the poly(T)-tail. Meili D; Kralovicova J; Zagalak J; Bonafé L; Fiori L; Blau N; Thöny B; Vorechovsky I Hum Mutat; 2009 May; 30(5):823-31. PubMed ID: 19280650 [TBL] [Abstract][Full Text] [Related]
8. Mutation of acceptor splice site of the SEDL gene in X-linked spondyloepiphyseal dysplasia tarda causes the activation of cryptic splice site. Ma HW; Jiang J; Lu JF; Guo R; Niu GH Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2005 Jun; 22(3):251-3. PubMed ID: 15952107 [TBL] [Abstract][Full Text] [Related]
9. In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G-->A mutations in introns of the dystrophin gene. Habara Y; Takeshima Y; Awano H; Okizuka Y; Zhang Z; Saiki K; Yagi M; Matsuo M J Med Genet; 2009 Aug; 46(8):542-7. PubMed ID: 19001018 [TBL] [Abstract][Full Text] [Related]
10. A G-to-A transition at the fifth position of intron-32 of the dystrophin gene inactivates a splice-donor site both in vivo and in vitro. Thi Tran HT; Takeshima Y; Surono A; Yagi M; Wada H; Matsuo M Mol Genet Metab; 2005 Jul; 85(3):213-9. PubMed ID: 15979033 [TBL] [Abstract][Full Text] [Related]
11. Two alternative exons can result from activation of the cryptic splice acceptor site deep within intron 2 of the dystrophin gene in a patient with as yet asymptomatic dystrophinopathy. Yagi M; Takeshima Y; Wada H; Nakamura H; Matsuo M Hum Genet; 2003 Feb; 112(2):164-70. PubMed ID: 12522557 [TBL] [Abstract][Full Text] [Related]
12. Extensive in silico analysis of NF1 splicing defects uncovers determinants for splicing outcome upon 5' splice-site disruption. Wimmer K; Roca X; Beiglböck H; Callens T; Etzler J; Rao AR; Krainer AR; Fonatsch C; Messiaen L Hum Mutat; 2007 Jun; 28(6):599-612. PubMed ID: 17311297 [TBL] [Abstract][Full Text] [Related]
13. Novel cryptic exons identified in introns 2 and 3 of the human dystrophin gene with duplication of exons 8-11. Ishibashi K; Takeshima Y; Yagi M; Nishiyama A; Matsuo M Kobe J Med Sci; 2006; 52(3-4):61-75. PubMed ID: 16849873 [TBL] [Abstract][Full Text] [Related]
14. BRCA1 IVS16+6T-->C is a deleterious mutation that creates an aberrant transcript by activating a cryptic splice donor site. Scholl T; Pyne MT; Russo D; Ward BE Am J Med Genet; 1999 Jul; 85(2):113-6. PubMed ID: 10406662 [TBL] [Abstract][Full Text] [Related]
15. Patients homozygous for the T435N mutation of succinyl-CoA:3-ketoacid CoA Transferase (SCOT) do not show permanent ketosis. Fukao T; Shintaku H; Kusubae R; Zhang GX; Nakamura K; Kondo M; Kondo N Pediatr Res; 2004 Dec; 56(6):858-63. PubMed ID: 15496607 [TBL] [Abstract][Full Text] [Related]
16. An aberrant splicing using a 3' cryptic splice site within the CH1 exon induces truncated mu-chain production. Komori T; Sugiyama H Immunology; 1995 May; 85(1):166-70. PubMed ID: 7635518 [TBL] [Abstract][Full Text] [Related]
17. Pseudoexon activation in the DMD gene as a novel mechanism for Becker muscular dystrophy. Tuffery-Giraud S; Saquet C; Chambert S; Claustres M Hum Mutat; 2003 Jun; 21(6):608-14. PubMed ID: 12754707 [TBL] [Abstract][Full Text] [Related]
18. A novel 3' splice-site mutation and a novel gross deletion in leukocyte adhesion deficiency (LAD)-1. Bernard Cher TH; Chan HS; Klein GF; Jabkowski J; Schadenböck-Kranzl G; Zach O; Roca X; Law SK Biochem Biophys Res Commun; 2011 Jan; 404(4):1099-104. PubMed ID: 21195692 [TBL] [Abstract][Full Text] [Related]
19. Prenatal diagnosis of succinyl-coenzyme A:3-ketoacid coenzyme A transferase deficiency. Fukao T; Song XQ; Watanabe H; Hirayama K; Sakazaki H; Shintaku H; Imanaka M; Orii T; Kondo N Prenat Diagn; 1996 May; 16(5):471-4. PubMed ID: 8844009 [TBL] [Abstract][Full Text] [Related]
20. Combined partial exon skipping and cryptic splice site activation as a new molecular mechanism for recessive type 1 von Willebrand disease. Gallinaro L; Sartorello F; Pontara E; Cattini MG; Bertomoro A; Bartoloni L; Pagnan A; Casonato A Thromb Haemost; 2006 Dec; 96(6):711-6. PubMed ID: 17139363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]