These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1895 related articles for article (PubMed ID: 16765878)
1. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Li WJ; Cooper JA; Mauck RL; Tuan RS Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878 [TBL] [Abstract][Full Text] [Related]
2. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation. Jonnalagadda JB; Rivero IV; Dertien JS J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317 [TBL] [Abstract][Full Text] [Related]
3. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260 [TBL] [Abstract][Full Text] [Related]
4. Amniotic epithelial stem cell biocompatibility for electrospun poly(lactide-co-glycolide), poly(ε-caprolactone), poly(lactic acid) scaffolds. Russo V; Tammaro L; Di Marcantonio L; Sorrentino A; Ancora M; Valbonetti L; Turriani M; Martelli A; Cammà C; Barboni B Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():321-9. PubMed ID: 27612719 [TBL] [Abstract][Full Text] [Related]
5. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold. Birhanu G; Akbari Javar H; Seyedjafari E; Zandi-Karimi A; Dusti Telgerd M Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1274-1281. PubMed ID: 28835133 [TBL] [Abstract][Full Text] [Related]
6. Thermally produced biodegradable scaffolds for cartilage tissue engineering. Lee SH; Kim BS; Kim SH; Kang SW; Kim YH Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274 [TBL] [Abstract][Full Text] [Related]
7. Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications. Moroni L; Hendriks JA; Schotel R; de Wijn JR; van Blitterswijk CA Tissue Eng; 2007 Feb; 13(2):361-71. PubMed ID: 17504063 [TBL] [Abstract][Full Text] [Related]
8. Fabrication and characterization of poly(gamma-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering. Chang KY; Cheng LW; Ho GH; Huang YP; Lee YD Acta Biomater; 2009 Jul; 5(6):1937-47. PubMed ID: 19282262 [TBL] [Abstract][Full Text] [Related]
9. Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. Shin HJ; Lee CH; Cho IH; Kim YJ; Lee YJ; Kim IA; Park KD; Yui N; Shin JW J Biomater Sci Polym Ed; 2006; 17(1-2):103-19. PubMed ID: 16411602 [TBL] [Abstract][Full Text] [Related]
10. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Yoo HS; Lee EA; Yoon JJ; Park TG Biomaterials; 2005 May; 26(14):1925-33. PubMed ID: 15576166 [TBL] [Abstract][Full Text] [Related]
11. Microstructure and properties of nano-fibrous PCL-b-PLLA scaffolds for cartilage tissue engineering. He L; Liu B; Xipeng G; Xie G; Liao S; Quan D; Cai D; Lu J; Ramakrishna S Eur Cell Mater; 2009 Oct; 18():63-74. PubMed ID: 19859871 [TBL] [Abstract][Full Text] [Related]
12. A structural model for the flexural mechanics of nonwoven tissue engineering scaffolds. Engelmayr GC; Sacks MS J Biomech Eng; 2006 Aug; 128(4):610-22. PubMed ID: 16813453 [TBL] [Abstract][Full Text] [Related]
13. Characterizations of chondrocyte attachment and proliferation on electrospun biodegradable scaffolds of PLLA and PBSA for use in cartilage tissue engineering. Wei JD; Tseng H; Chen ET; Hung CH; Liang YC; Sheu MT; Chen CH J Biomater Appl; 2012 May; 26(8):963-85. PubMed ID: 21273264 [TBL] [Abstract][Full Text] [Related]
14. The effects of lactate and acid on articular chondrocytes function: Implications for polymeric cartilage scaffold design. Zhang X; Wu Y; Pan Z; Sun H; Wang J; Yu D; Zhu S; Dai J; Chen Y; Tian N; Heng BC; Coen ND; Xu H; Ouyang H Acta Biomater; 2016 Sep; 42():329-340. PubMed ID: 27345139 [TBL] [Abstract][Full Text] [Related]
16. Preparation of cylinder-shaped porous sponges of poly(L-lactic acid), poly(DL-lactic-co-glycolic acid), and poly(ε-caprolactone). He X; Kawazoe N; Chen G Biomed Res Int; 2014; 2014():106082. PubMed ID: 24719843 [TBL] [Abstract][Full Text] [Related]
17. Biomineral coating increases bone formation by ex vivo BMP-7 gene therapy in rapid prototyped poly(L-lactic acid) (PLLA) and poly(ε-caprolactone) (PCL) porous scaffolds. Saito E; Suarez-Gonzalez D; Murphy WL; Hollister SJ Adv Healthc Mater; 2015 Mar; 4(4):621-32. PubMed ID: 25515846 [TBL] [Abstract][Full Text] [Related]
18. A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes. Oliveira JT; Crawford A; Mundy JM; Moreira AR; Gomes ME; Hatton PV; Reis RL J Mater Sci Mater Med; 2007 Feb; 18(2):295-302. PubMed ID: 17323161 [TBL] [Abstract][Full Text] [Related]
19. A new biodegradable polyester elastomer for cartilage tissue engineering. Kang Y; Yang J; Khan S; Anissian L; Ameer GA J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714 [TBL] [Abstract][Full Text] [Related]
20. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering. Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]