BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 16766053)

  • 61. A family of target site-specific retrotransposons interrupts spliced leader RNA genes in trypanosomatids.
    Aksoy S
    J Parasitol; 1993 Oct; 79(5):645-51. PubMed ID: 8410534
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mammalian selenoprotein in which selenocysteine (Sec) incorporation is supported by a new form of Sec insertion sequence element.
    Korotkov KV; Novoselov SV; Hatfield DL; Gladyshev VN
    Mol Cell Biol; 2002 Mar; 22(5):1402-11. PubMed ID: 11839807
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The Specific Elongation Factor to Selenocysteine Incorporation in Escherichia coli: Unique tRNA
    Serrão VHB; Fernandes AF; Basso LGM; Scortecci JF; Crusca Júnior E; Cornélio ML; de Souza BM; Palma MS; de Oliveira Neto M; Thiemann OH
    J Mol Biol; 2021 Nov; 433(23):167279. PubMed ID: 34624294
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Modeling the tertiary interactions in the eukaryotic selenocysteine tRNA.
    Ioudovitch A; Steinberg SV
    RNA; 1998 Apr; 4(4):365-73. PubMed ID: 9630244
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Reconstitution of selenocysteine incorporation reveals intrinsic regulation by SECIS elements.
    Gupta N; DeMong LW; Banda S; Copeland PR
    J Mol Biol; 2013 Jul; 425(14):2415-22. PubMed ID: 23624110
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Selenocysteine tRNA identification in the model organisms Dictyostelium discoideum and Tetrahymena thermophila.
    Shrimali RK; Lobanov AV; Xu XM; Rao M; Carlson BA; Mahadeo DC; Parent CA; Gladyshev VN; Hatfield DL
    Biochem Biophys Res Commun; 2005 Apr; 329(1):147-51. PubMed ID: 15721286
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Novel selenoproteins identified in silico and in vivo by using a conserved RNA structural motif.
    Lescure A; Gautheret D; Carbon P; Krol A
    J Biol Chem; 1999 Dec; 274(53):38147-54. PubMed ID: 10608886
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A nuclear tRNA gene cluster in the protozoan Leishmania tarentolae and differential distribution of nuclear-encoded tRNAs between the cytosol and mitochondria.
    Shi X; Chen DH; Suyama Y
    Mol Biochem Parasitol; 1994 May; 65(1):23-37. PubMed ID: 7935626
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A selDABC cluster for selenocysteine incorporation in Eubacterium acidaminophilum.
    Gursinsky T; Jäger J; Andreesen JR; Söhling B
    Arch Microbiol; 2000 Sep; 174(3):200-12. PubMed ID: 11041351
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Recoding elements located adjacent to a subset of eukaryal selenocysteine-specifying UGA codons.
    Howard MT; Aggarwal G; Anderson CB; Khatri S; Flanigan KM; Atkins JF
    EMBO J; 2005 Apr; 24(8):1596-607. PubMed ID: 15791204
    [TBL] [Abstract][Full Text] [Related]  

  • 71. UGA codon position-dependent incorporation of selenocysteine into mammalian selenoproteins.
    Turanov AA; Lobanov AV; Hatfield DL; Gladyshev VN
    Nucleic Acids Res; 2013 Aug; 41(14):6952-9. PubMed ID: 23716634
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Structural basis for mRNA recognition by elongation factor SelB.
    Yoshizawa S; Rasubala L; Ose T; Kohda D; Fourmy D; Maenaka K
    Nat Struct Mol Biol; 2005 Feb; 12(2):198-203. PubMed ID: 15665870
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Alternative transcripts and 3'UTR elements govern the incorporation of selenocysteine into selenoprotein S.
    Bubenik JL; Miniard AC; Driscoll DM
    PLoS One; 2013; 8(4):e62102. PubMed ID: 23614019
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Genetic probing of the interaction between the translation factor SelB and its mRNA binding element in Escherichia coli.
    Kromayer M; Neuhierl B; Friebel A; Böck A
    Mol Gen Genet; 1999 Dec; 262(4-5):800-6. PubMed ID: 10628863
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Overexpression of Recombinant Selenoproteins in E. coli.
    Cheng Q; Arnér ESJ
    Methods Mol Biol; 2018; 1661():231-240. PubMed ID: 28917049
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Supramolecular complexes mediate selenocysteine incorporation in vivo.
    Small-Howard A; Morozova N; Stoytcheva Z; Forry EP; Mansell JB; Harney JW; Carlson BA; Xu XM; Hatfield DL; Berry MJ
    Mol Cell Biol; 2006 Mar; 26(6):2337-46. PubMed ID: 16508009
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Eukaryotic selenocysteine inserting tRNA species support selenoprotein synthesis in Escherichia coli.
    Baron C; Sturchler C; Wu XQ; Gross HJ; Krol A; Böck A
    Nucleic Acids Res; 1994 Jun; 22(12):2228-33. PubMed ID: 8036149
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The selenium to selenoprotein pathway in eukaryotes: more molecular partners than anticipated.
    Allmang C; Wurth L; Krol A
    Biochim Biophys Acta; 2009 Nov; 1790(11):1415-23. PubMed ID: 19285539
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Analysis of eukaryotic mRNA structures directing cotranslational incorporation of selenocysteine.
    Kollmus H; Flohé L; McCarthy JE
    Nucleic Acids Res; 1996 Apr; 24(7):1195-201. PubMed ID: 8614619
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Characterisation of a developmentally regulated amino acid transporter gene from Leishmania amazonensis.
    Geraldo MV; Silber AM; Pereira CA; Uliana SR
    FEMS Microbiol Lett; 2005 Jan; 242(2):275-80. PubMed ID: 15621448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.